Accelerate to Discover

Back to filter

Related topics

How to build the largest genome ever, in 3 easy steps

BioNano Genomics

Feb 23, 2018

Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined...

High-throughput observation of molecular motor activity & dynamics

LUMICKS

Feb 21, 2018

With LUMICKS’ C-Trap, it is possible to observe myosin activity,the processive motion, the binding kinetics along...

BioNano mapping outperforms existing clinical tests in Duchenne´s muscular dystrophy patients

BioNano Genomics

Feb 15, 2018

In a publication in Genome Medicine, a team of researchers from Children’s National Health Center and University of...

Label-free, real-time live-cell assays for spheroids: IncuCyte bright-field analysis

Sartorius

Feb 12, 2018

A  growing  body  of  evidence  suggests  that  more  relevant  and  translational  observations  can  be  made  with ...

Feb 25, 2018

Measuring absolute blood perfusion in mice using dynamic contrast-enhanced ultrasound

VisualSonics FujiFilm

Feb 8, 2018

Contrast-enhanced ultrasound imaging involves the injection of gas-filled microbubbles that do not extravasate. This...

Nanoparticle-uptake behavior in two standard cell lines, NIH/3T3 and A549

Etaluma

Feb 7, 2018

The uptake of nanomaterials into different cell types is a key issue for the determination of nanotoxicity as well as...

Mapping and phasing of structural variation in patient genomes using nanopore sequencing

Sage Science

Feb 6, 2018

Scientists used the Oxford MinION nanopore sequencer with a novel pipeline, NanoSV, to detect structural variants from...

Feb 25, 2018

De novo design of a biologically active amyloid

Mauna Kea Technologies

Feb 5, 2018

Short amyloidogenic protein fragment can induce the aggregation of a protein normally not associated with amyloidosis...

Show all topics (10)

Looking for structural variations with IRYS from BioNano Genomics

Mar 15, 2016

Despite recent advances in base-calling accuracy and read length, de novo genome assembly and structural variant analysis using ‘short read’ shotgun sequencing remain challenging. Most resequencing projects rely on mapping the sequencing data to the reference sequence to identify variants of interest. Whole-genome scanning techniques have revealed the prevalence and importance of structural variation. Detecting copy number variation often relies on detection of relative signal intensities by array-based or quantitative PCR-based technologies. However, except for deletions, these methods do not provide positional information regarding the locations of copy number variants, and they cannot detect balanced structural variation, such as inversions or translocations.. The instrumentation presented by BioNano Genomics can improve de novo sequence assembly by providing long labeled DNA contigs with so far unknown structural variations.

Read the application note.

Application

Related technologies: Genome Mapping

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey