Accelerate to discover

Back to filter

Related topics

Cytek webinar : Improved flow cytometry assay resolution with autofluorescence extraction

Cytek Biosciences

Mar 30, 2021

The power of autofluorescence extraction in the detection of dim fluorescence on highly autofluorescent cells, and the...

Unleash Your Illumina Sequencer with TELL-Seq Linked Reads

Sage Science

Mar 24, 2021

Sage Science distributes universal sequencing technology´s TELL-Seq linked-read NGS library prep kits used with very...

Bruker webinar : High-resolution exploration of ESM-based vascularized tissue-flaps

Bruker Biospin

Mar 22, 2021

By employing a tissue engineering approach based on biological tissue constructs, Dr. Redenski has fabricated composite...

Apr 12, 2021

A real time-saver, accurate cell counting in 15 seconds with C100 counter

RWD

Mar 17, 2021

Cell counters are tools for counting live and/or dead cells in a culture. Any researcher who works in a cell culture...

Innovation never takes a break with IncuCyte

Sartorius

Mar 11, 2021

Analyze your cells for days, weeks or even months as they sit stationary in the stable environment of your tissue...

Imaging Flow Cytometry Luminex learning sessions

Luminex

Mar 5, 2021

Start the new year with new knowledge! Get the most from your Amnis instrument and IDEAS Software with training...

Apr 12, 2021

Preclinical lung imaging offers effective evaluation of drug candidates

Bruker Biospin

Mar 1, 2021

The incidence of respiratory disease is increasing throughout the world, and the demand for safe, effective drugs to...

Show all topics (10)

Bronchoscopic confocal fluorescence microscopy for in vivo assessment of free-breathing mice

May 3, 2018

Respiratory diseases, such as pulmonary infections, are an important cause of morbidity and mortality worldwide. Preclinical studies often require invasive techniques to evaluate the extent of infection. Fibered confocal fluorescence microscopy (FCFM) is an emerging optical imaging technique that allows for real-time detection of fluorescently labeled cells within live animals, thereby bridging the gap between in vivo whole-body imaging methods and traditional histological examinations. Previously, the use of FCFM in preclinical lung research was limited to endpoint observations due to the invasive procedures required to access lungs. Here, we introduce a bronchoscopic FCFM approach that enabled in vivo visualization and morphological characterisation of fungal cells within lungs of mice suffering from pulmonary Aspergillus or Cryptococcus infections. The minimally invasive character of this approach allowed longitudinal monitoring of infection in free-breathing animals, thereby providing both visual and quantitative information on infection progression. Both the sensitivity and specificity of this technique were high during advanced stages of infection, allowing clear distinction between infected and non-infected animals. In conclusion, our study demonstrates the potential of this novel bronchoscopic FCFM approach to study pulmonary diseases, which can lead to novel insights in disease pathogenesis by allowing longitudinal in vivo microscopic examinations of the lungs.

Do you want to know more? Read this interesting article!

Scientific paper
Application

Related technologies: Probe based confocal microscopy

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 255 700 886

Send Message

Brand profile

Mauna Kea Technologies

Mauna Kea Technologies manufactures Cellvizio Lab, confocal probe based imaging system, providing cellular-level images with minimal invasiveness for longitudinal studies.

Related products

Cellvizio Lab is a single band fiber based microscope for observing in real time at cellular scale

show detail

Cellvizio, a fiber based microscope for observing in real time at cellular scale, features simultaneous, co-registered dual band excitation and detection

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey