Accelerate to discover

Back to filter

Related topics

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Exosome-Mediated Delivery of Small Molecules, RNA & DNA for Development of Novel Cancer Therapeutics

Spectral Instruments Imaging

Jun 3, 2024

Disha Moholkar of University of Louisville's Gupta Lab
Tuesday, June 11, 2024, 6:30 PM
...

Jun 18, 2024

Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system

Cell Microsystems

May 27, 2024

Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...

High-frequency Ultrasound System For Preclinical Imaging

S-Sharp

May 13, 2024

The Prospect T1 is an innovative high-frequency ultrasound system designed specifically for in vivo preclinical imaging...

“Range+T “ for Tight Sizing of HMW Libraries

Sage Science

May 10, 2024

We decided to do a deep dive into Range+T to get a better handle the method, and to develop best practices for using...

Jun 18, 2024

April 2024 publication revealing benefits of using intravital microscopy in trascriptomics studies

IVIM Technology

May 8, 2024

Transcriptional activation of Bmal1 drives the inflammatory activity of monocytes by modulating mitochondrial unfolded...

Show all topics (10)

Bronchoscopic confocal fluorescence microscopy for in vivo assessment of free-breathing mice

May 3, 2018

Respiratory diseases, such as pulmonary infections, are an important cause of morbidity and mortality worldwide. Preclinical studies often require invasive techniques to evaluate the extent of infection. Fibered confocal fluorescence microscopy (FCFM) is an emerging optical imaging technique that allows for real-time detection of fluorescently labeled cells within live animals, thereby bridging the gap between in vivo whole-body imaging methods and traditional histological examinations. Previously, the use of FCFM in preclinical lung research was limited to endpoint observations due to the invasive procedures required to access lungs. Here, we introduce a bronchoscopic FCFM approach that enabled in vivo visualization and morphological characterisation of fungal cells within lungs of mice suffering from pulmonary Aspergillus or Cryptococcus infections. The minimally invasive character of this approach allowed longitudinal monitoring of infection in free-breathing animals, thereby providing both visual and quantitative information on infection progression. Both the sensitivity and specificity of this technique were high during advanced stages of infection, allowing clear distinction between infected and non-infected animals. In conclusion, our study demonstrates the potential of this novel bronchoscopic FCFM approach to study pulmonary diseases, which can lead to novel insights in disease pathogenesis by allowing longitudinal in vivo microscopic examinations of the lungs.

Do you want to know more? Read this interesting article!

Scientific paper
Application

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 210 323 421

Send Message

Brand profile

Mauna Kea Technologies

Mauna Kea Technologies manufactures Cellvizio Lab, confocal probe based imaging system, providing cellular-level images with minimal invasiveness for longitudinal studies.

Related products

Cellvizio Lab is a single band fiber based microscope for observing in real time at cellular scale

show detail

Cellvizio, a fiber based microscope for observing in real time at cellular scale, features simultaneous, co-registered dual band excitation and detection

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey