Accelerate to discover

Back to filter

Related topics

Magnetic resonance elastography techniques and preclinical applications

Bruker Biospin

Sep 14, 2021

It has been known for centuries that tissue stiffness can change in the presence of disease, but quantifying such...

See What's Possible with the PippinHT

Sage Science

Sep 14, 2021

Programmable DNA size selection enables new discoveries by helping optimize the library detected by a sequencer. That’s...

Ex Vivo dental imaging is directly translatable to the clinic

Bruker Biospin

Sep 14, 2021

Although patients are too large in size for preclinical microCT scanners, it still has a big significance in clinical...

IncuCyte live cell analysis system for 3D Organoids discovery

Sartorius & Essen BioScience

Sep 10, 2021

Live-Cell Analysis has revolutionized numerous studies, with a wide selection of applications namely 3D Tumour Spheroid...

Sep 20, 2021

Blood-Brain Barrier (BBB) - Pathophysiology in ischemic stroke

RWD

Aug 27, 2021

In-depth Understanding of Blood-Brain Barrier (BBB)

Introducing New Aura 4.0 software

Spectral Instruments Imaging

Aug 27, 2021

With new features for both acquisition & analysis Aura Software enables you to capture and analyze your data quickly,...

Micro-CT user meeting 2021

Bruker Biospin

Aug 19, 2021

Year after year, the Micro-CT User meeting showcases state-of-the-art applications in both life and material sciences,...

Sep 20, 2021

Comparison of gamma and x-ray irradiation results

Precision X-Ray

Aug 12, 2021

Biological effects of Cs-137 and X-ray irradiators are comparable with regards to reconstitution chimerism in normal...

Show all topics (10)

Elevated NSD3 histone methylation activity drives squamous cell lung cancer

Jun 8, 2021

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate.

Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.

Do you want to learn more? Read the whole article, or just ask us!

 

Scientific paper
Application

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 255 700 886

Send Message

Brand profile

Spectral Instruments Imaging

Spectral Instruments Imaging manufactures instruments for preclinical optical (bioluminescent, fluorescent) and X-ray imaging.

Related products

System for individual researchers and smaller specialist teams to conduct optical imaging studies in disease model progression, response to therapy, and cell migration in-vivo.

show detail

The Ami HT and Ami HTX (includes X-Ray imaging) optical imaging systems establish a new, high throughput benchmark for in vivo imaging suitable for specialist researchers and small teams.

show detail

The Lago and X‐Ray capable Lago X optical imaging systems provide a powerful and flexible in-vivo imaging capability suitable for imaging cores, specialist researchers and small teams, delivering an unmatched 10 mouse capacity across BLI, FLI and X‐Ray.

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey