The detection of single extracellular vesicles for NTA analysis can be achieved either by light scattering or fluorescence signal coming from a single particle. Fluorescence imaging can provide significant advantages over the light scattering-based NTA analysis. For example, light scattering leads to non-specific detection of particles while antibody or membrane staining-based fluorescence imaging provides highly specific detection, so one only quantifies the particles they are interested in.
ONI nanoimager offers a robust way to characterize EVs with two completely orthogonal techniques in the same instrument. dSTORM is a method for imaging fluorescently labeled molecules with 20nm resolution. This means that dSTORM can report on the markers present on single vesicles (such as protein or RNA content), as well as their distribution on the vesicle relative to one another. Importantly, this also means that dSTORM can be used to directly infer the size of vesicles on a glass surface by imaging them, in the same way that electron microscopy has been used in the past.
Do not miss any EV's information...Explore the Nanoimager NOW!