

Confocal quantitative image cytometry applications

Date:

23rd of November, 2017, 13:00

Place:

University Campus Bohunice, Kamenice 753/5, Brno Seminary room, building A3

Topic:

Technology overview, applications and hands-on workshop using CQ1 imaging cytometer

Registration:

Miroslav Hutnan, hutnan@accela.eu, +420 739 394 360 - till 21st November, 2017 (limited amount of places available on spot)

Program:

1200 12 50	A 1	• •	1.1	
13:00 - 13:50	Annlications	seminar, softwar	re and hardware	introduction
13.00	Applications.	ociriniai, ocitivai	C di la Hai avvai c	, iiiti oddctioii

14:00 - 15:00 Image acquisition

15:15 - 17:00 Quantitative image analysis, open discussion

Abstract:

Confocal quantitative image cytometry is a growing field finding its applications in an increasing number of research areas, with its core use in cellular and molecular biology.

Here we present a compact, easy to use benchtop solution, that allows not only for fast, high resolution imaging, but presents a reliable platform for real time live cell analysis in a fully controlled environment. Unlike a flow cytometer, the approach does not require to flush cells away, so all time-based changes in a sample can be simply followed by a continued measurement, or even after incubating the sample. Confocal Imaging quantitative cytometry enables 3D imaging and quantification of live cell clusters, such as spheroids within a 3D culture vessel without intervention, keeping the cells intact. During post-acquisition, the data can be exported into general formats which are compatible with various third-party software for advanced data analysis. The platform can be constructed into a fully customized system, with a possible integration with external systems - via a robot for culture dish handling. Key features of the **CQ1 imaging cytometer**, **designed by Yokogawa**, include: precise quantification of morphological information, full capability of live cell observation and highly reproducible measurements, providing a great foundation for advanced image-based research.

