Vevo LAZR

Photoacoustic Imaging Platform

Listen to the light
Vevo LAZR: The Future of Preclinical Imaging

Features

Inherent Co-registration
Placement of photoacoustic signal into an anatomical context in 2D or 3D.

Hemoglobin Quantification
Calculation of total hemoglobin.

Vasculature
Visualization of vascular structure in 2D and 3D.

Oxygen Saturation Quantification
Co-registered 2D image showing quantification of oxygen saturation in a microenvironment of heterogeneous tumor tissue (750 and 850 nm).

Multispectral Imaging
Image processing at multiple wavelengths to delineate various contrast agents.

Absorption Spectra Analysis
Generating absorption spectra to characterize photoacoustic contrast agents.

Applications

Tumor Microenvironment
3D scan of a mouse hindlimb subcutaneous tumor showing co-registered anatomical oxygen saturation signal (750 and 850 nm).

Lymph Node Detection
3D multispectral image of mouse axilla showing maximum intensity projection (MIP) of lymph node and associated lymph vessel containing methylene blue as a contrast agent (680 nm).

Nanoparticle accumulation in tumor tissue
Multispectral processing isolates and displays signal from EGFR-targeted gold nanorods (gold) within the tumor.

Ischemia
Co-registered 2D anatomical and photoacoustic image showing oxygen saturation signal in a mouse hindlimb under ischemic conditions induced with a tourniquet (750 and 850 nm).

Tumor Microenvironment
3D scan of a mouse hindlimb subcutaneous tumor showing co-registered anatomical oxygen saturation signal (750 and 850 nm).

Brain Imaging
Image of 3D rendered oxygen saturation map of a maternal mouse brain with intact skull and skin (750 and 850 nm).

Developmental research
Co-registered 2D anatomical and photoacoustic image showing oxygen saturation in a mouse maternal kidney, placenta, and embryos (750 and 850 nm).
The Vevo® LAZR Photoacoustics Imaging technology from VisualSonics® integrates the sensitivity of optical imaging with the resolution of high-frequency ultrasound to provide never-before-seen insights into tissue microenvironment, hemodynamic changes and a wealth of other research areas.

Vevo LAZR Photoacoustics Imaging platform has built-in multispectral imaging, quantification and assessment of oxy and deoxy-hemoglobin, high sensitivity, high specificity, real-time and 3D imaging capabilities among a host of other premium features and sets a new standard of performance and functionality for preclinical imaging platforms.

Real-Time Photoacoustic Imaging with Vevo LAZR Technology

Inherent Co-registration of Photoacoustic and Anatomical Data

Photoacoustic imaging with Vevo LAZR Technology uniquely and inherently co-registers high sensitivity and 'high' specificity with high-resolution – even in deep tissues – and in real-time. Detection and quantification of high-resolution, functional photoacoustic signals in real-time is revolutionary; understanding where the signals are with respect to microscopic anatomy is essential to effectively address the needs of biological research.

The photoacoustic principle is simple – light is used to generate sound. Biology, however, is complex and requires complex solutions. Vevo LAZR technology employs integrated fiber-optic transducers to deliver nanosecond laser pulses into deep anatomical targets. Tissues differentially and specifically absorb the light causing transient thermoelastic expansions, generating acoustic pressure waves which are detected by 256 sensitive piezoelectric elements. Transmitted ultrasound pulses are similarly received generating high-resolution images of microscopic anatomical structures. Inherent co-registration of photoacoustic signals acquired in real-time with high-resolution ultrasound is unique to Vevo LAZR technology – it is the future of preclinical imaging.

- Inherent co-registration of photoacoustic and anatomical images
- Real-time, 3D processing
- High sensitivity, high specificity
- Multispectral imaging
- Facilitates biomarker development and translational research
- Longitudinal studies
The Vevo LAZR Photoacoustic Imaging Platform
A new benchmark for preclinical imaging systems

Photoacoustic Imaging
- Inherent co-registration
- Real-time in vivo imaging of deep tissue (up to 1 cm)
- High sensitivity and specificity
- 45 micron resolution
- 3D imaging

Features & Functionality
- Co-registration of photoacoustic and anatomical images
 - Inherent co-registration in both 2D and 3D planes
- 3D-Mode
 - Real-time comprehensive visualization of targets
 - Rapid volumetric acquisition
- Multispectral photoacoustic imaging with tunable laser
 - Detection and quantification of contrast agents
 - Sentinel lymph node detection
 - Functional imaging
 - Cellular specificity
- Oxygen saturation and hemoglobin content
 - Hypoxia in heterogeneous tumors
 - Anemia
 - Fetal/maternal physiology
 - Stroke/ischemia
- Advanced post processing and analysis
 - Digital RF-Mode export
 - Review, analysis and export of co-registered data
- Respiration gating capability
 - Eliminate motion induced artifacts in imaging

LAZRTight Imaging Enclosure
Exclusive Animal Handling System

The LAZRTight™ imaging enclosure is a laser light containment and animal handling and positioning system. The set-up provides encapsulation of the imaging station and the Vevo LAZR transducer allowing for maximal system performance for image and data generation while ensuring safety of the operator. Furthermore, it optimizes the welfare of the animal and ensures an efficient and reproducible imaging session.

Features:
- Containment of laser light
- No dedicated room required
- Fits over animal imaging system
- Temperature controlled platform
- Integrated physiological monitoring

Accessories

Vevo LAZR transducer

Vevo Imaging Station

Mice & Rat Table

Anesthesia System

Vevo LAZR tight Imaging enclosure (certified Class I device for safe handling of laser light)
The core of the Vevo LAZR technology is the LZ Series integrated fiber-optic linear array transducers with microbeamforming technology. Harnessing the sensitivity of 256 active elements, the LZ Series transducers provides laser excitation as well as provides clear, highly resolved ultrasound images - in both 2D and 3D modes.

LZ Series fiber-optic MicroScan™ transducers:
- Integrates ultrasound detection and fiber-optic delivery in a small handheld footprint
- Real-time signal acquisition
- Multiple frequencies available and optimized for specific research applications

<table>
<thead>
<tr>
<th>TRANSDUCER</th>
<th>AXIAL RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ550 32-55 MHz</td>
<td>44 µm</td>
</tr>
<tr>
<td>LZ250 23-24 MHz</td>
<td>75 µm</td>
</tr>
</tbody>
</table>

Nanoparticles such as gold nanorods and carbon nanotubes have emerged in recent years as specific, customizable agents capable of being detected with photoacoustics. Since many diseases do not ordinarily show endogenous photoacoustic contrast, nanoparticles are being developed to complement screening by enhancing the range of imaging applications.

The Vevo LAZR platform gives researchers in vivo, real-time, co-registered visualization of nanoparticles in anatomical images. The multispectral imaging functionality (imaging with multiple wavelengths 680-970 nm), facilitates development of multifunctional and multiplexed nanoparticles.

Because of their small size, nanoscale devices can readily interact with biomolecules on both the surface and inside cells. With the ability to gain cellular and molecular access, nanoparticles have the potential to detect disease and deliver treatment in ways unimagined before now. Nanotechnology is being investigated by researchers for its potential to improve cancer detection, diagnosis and treatment. Specifically:
- Augmenting sensitivity of photoacoustic imaging techniques
- Detecting cancer at the onset of early molecular changes
- Developing biomarkers for cancer detection and diagnosis
- Mapping and marking of DNA mutations associated with cancer

Nanoparticles such as gold nanorods and carbon nanotubes have emerged in recent years as specific, customizable agents capable of being detected with photoacoustics. Since many diseases do not ordinarily show endogenous photoacoustic contrast, nanoparticles are being developed to complement screening by enhancing the range of imaging applications.

The Vevo LAZR platform gives researchers in vivo, real-time, co-registered visualization of nanoparticles in anatomical images. The multispectral imaging functionality (imaging with multiple wavelengths 680-970 nm), facilitates development of multifunctional and multiplexed nanoparticles.

Because of their small size, nanoscale devices can readily interact with biomolecules on both the surface and inside cells. With the ability to gain cellular and molecular access, nanoparticles have the potential to detect disease and deliver treatment in ways unimagined before now. Nanotechnology is being investigated by researchers for its potential to improve cancer detection, diagnosis and treatment. Specifically:
- Augmenting sensitivity of photoacoustic imaging techniques
- Detecting cancer at the onset of early molecular changes
- Developing biomarkers for cancer detection and diagnosis
- Mapping and marking of DNA mutations associated with cancer
The advanced technology of the Vevo LAZR high-resolution photoacoustic imaging system is supported by an equally sophisticated approach to service and support. The VisualSonics team provides expert training and applications support and is committed to maintaining system performance. VisualSonics offers a broad range of service solutions that meet your needs.

Applications Support and Training
Customized to Your Needs
- On-site customer training
- Vevo Imaging Courses
 - Available in Toronto & Amsterdam
 - Vevo MicroMarker contrast imaging
 - Abdominal and 3D techniques
 - Cardiovascular imaging
 - Doppler and vascular techniques
 - Photoacoustic imaging
 - Strain Imaging using VevoStrain™ Software
- Symposia
 - Associated with major conferences

Online Learning Center and Customer Website http://www.visualsonics.com
- Find publications, protocol guides, imaging guides & training videos
- Private, secure

VisualSonics moderated forum allows users to ask questions and share their experience with the Vevo systems

Technical Support
VisualSonics provides on-going Service and Technical Support with our team of experienced and certified professionals.

support@visualsonics.com

Performance and reliability you expect

Inherent Co-registration | High Sensitivity | High Specificity | Real-time
Anatomical | Functional | Molecular Imaging