Accelerate to discover

Back to filter

Related topics

Introducing Celloger Mini: Automated and compact Live cell imaging inside your incubator

Curiosis

Jul 23, 2021

Celloger Mini is an automated live cell imaging system based on bright-field microscopy with fully motorized stages. 

High quality Bioluminescence and X-Ray analysis in lung squamous cell carcinoma

Spectral Instruments Imaging

Jul 21, 2021

Spectral Instruments Imaging provides unrivaled sensitivity for bioluminescence, fluorescence and X-Ray for in vivo...

Webinar recording: Autofluorescence management - the power of Spectral Flow Cytometry

Cytek Biosciences

Jul 15, 2021

One of the key advantages of spectral flow cytometry is its ability to extract sample autofluorescence, making it much...

Top 10 Pharma companies have chosen CYTEK for their flow cytometry facility

Cytek Biosciences

Jul 13, 2021

6 of Top 10 Pharma Companies (Based on total group revenues) have chosen CYTEK - full spectrum flow cytometer for their...

Aug 1, 2021

Introducing IZON Exoid: accurate analysis of nanoparticles from 1 to 1000 nm

IZON

Jul 7, 2021

The IZON Exoid is the only standardisable method of measuring the entire nano range (1–1000 nm).

Webinar recording: Super-Resolution imaging of Chromatin organization in health and disease

ONI

Jul 6, 2021

Understanding how cells organize the array of components within their membranous confines can not only provide insight...

Aug 1, 2021

Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles

Spectral Instruments Imaging

Jun 23, 2021

Overactivation of the PI3K/mTOR signaling has been identified in non-Hodgkin’s lymphoma. BEZ235 is an effective dual...

Show all topics (10)

Webinar recording: Analysis of extracellular vesicles by AMNIS imaging flow cytometer

Nov 4, 2019

Extracellular vesicles (EVs) such as exosomes (70 nm – 160 nm in diameter) and microvesicles (100 nm – 1,000 nm diameter) can be harvested from cell-culture supernatants and from all bodily fluids. Current standard techniques to visualize, quantify, and characterize EVs are electron microscopy, nanoparticle tracking analyses, and dynamic light scattering. To further characterize and discriminate EVs, more exact high-throughput technologies to analyze their surface are highly desired. Although conventional flow cytometry is limited to measuring particles down to approximately 300 nm – 500 nm, a relatively new flow-cytometric method called “imaging flow cytometry” allows for the analysis of EVs smaller than 300 nm. This webinar on Wednesday, June 8, 2016 (6 pm CEST) will introduce viewers to the challenges, limitations, and pitfalls of flow cytometry-based EV analysis, and to the imaging flow cytometry methodology. Also covered will be techniques for analyzing exosomes, microvesicles, and apoptotic bodies in unprocessed samples, how imaging flow cytometry can be used to evaluate or reevaluate EV isolation techniques, and the advantages and disadvantages of using this method.

Read more

Register now

 

Scientific paper
Technical breakthrough
Application
Meet us
Video

Related technologies: Imaging flow cytometry

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Luminex

Luminex offer a comprehensive range of innovative flow cytometers, including the Imaging flow cytometers.

Related products

Flow cytometer capable of high resolution microscopic assays

show detail

Combine the speed and statistical power of flow cytometry with microscopy

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey