Accelerate to discover

Back to filter

Related topics

Micro-ct study of the anatomy of a grasshopper

Bruker Biospin

Jan 23, 2020

Scanned with a Bruker Skyscan-1172 high resolution microtomograph at the Department of Zoology of the University of...

IncuCyte Live-Cell Analysis System - nearly 3,000 publications and counting!

Sartorius

Jan 21, 2020

IncuCyte has now reached over 2,000 cited publications! Search our publications filter to see what exciting research is...

Development of superparamagnetic nanoparticles as an efficient contrast agent for multimodal imaging

Bruker Biospin

Jan 16, 2020

Gadolinium‐based contrast agents are used to provide diagnostic information in clinical magnetic resonance...

IncuCyte live-cell analysis system for live-cell visualization of neuronal activity

Sartorius

Jan 13, 2020

A major impediment to studying diseases affecting the human nervous system is the ability to monitor, analyze, and...

Jan 26, 2020

Latest updates to Bionano Access and Bionano Solve

BioNano Genomics

Jan 8, 2020

Bionano Access v1.5 and Bionano Solve v3.5 are the latest updates to Bionano visualization software and analysis tools....

The qNano Gold: Obtain the most detailed Information for each individual nanoparticle

IZON

Jan 6, 2020

The qNano Gold measures particles using the Tunable Resistive Pulse Sensing (TRPS) principle. TRPS is the most powerful...

The importance of titrating Viability dyes on the Aurora Spectral Cytometer

Cytek Biosciences

Jan 2, 2020

What is the best way to decide when your viability is titrated properly? Unlike titrating antibodies how to determine...

Jan 26, 2020

New analysis open modules expand capabilities of Guava Muse flow cytometer

Luminex

Dec 30, 2019

Sophisticated cell analysis doesn’t have to be complicated or costly. With the Guava Muse cell analyzer, you can now...

Show all topics (10)

Webinar recording: Analysis of extracellular vesicles by AMNIS imaging flow cytometer

Nov 4, 2019

Extracellular vesicles (EVs) such as exosomes (70 nm – 160 nm in diameter) and microvesicles (100 nm – 1,000 nm diameter) can be harvested from cell-culture supernatants and from all bodily fluids. Current standard techniques to visualize, quantify, and characterize EVs are electron microscopy, nanoparticle tracking analyses, and dynamic light scattering. To further characterize and discriminate EVs, more exact high-throughput technologies to analyze their surface are highly desired. Although conventional flow cytometry is limited to measuring particles down to approximately 300 nm – 500 nm, a relatively new flow-cytometric method called “imaging flow cytometry” allows for the analysis of EVs smaller than 300 nm. This webinar on Wednesday, June 8, 2016 (6 pm CEST) will introduce viewers to the challenges, limitations, and pitfalls of flow cytometry-based EV analysis, and to the imaging flow cytometry methodology. Also covered will be techniques for analyzing exosomes, microvesicles, and apoptotic bodies in unprocessed samples, how imaging flow cytometry can be used to evaluate or reevaluate EV isolation techniques, and the advantages and disadvantages of using this method.

Read more

Register now

 

Scientific paper
Technical breakthrough
Application
Meet us
Video

Related technologies: Imaging flow cytometry

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Luminex

Luminex offer a comprehensive range of innovative flow cytometers, including the Imaging flow cytometers.

Related products

Flow cytometer capable of high resoluition microscopic assays

show detail

Combine the speed and statistical power of flow cytometry with microscopy

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey