Accelerate to discover

Back to filter

Related topics

Deep-Learning, Label-Free, Quantitative Cell Segmentation with IncuCyte

Sartorius & Essen BioScience

Sep 24, 2021

Sartorius Unveils LIVECell, a Deep-Learning Dataset for Label-Free, Quantitative Cell Segmentation in Nature Methods.

The roles of preclinical optical imaging in cancer research

Spectral Instruments Imaging

Sep 22, 2021

Watch the last Spectral Instrument Imaging webinar with Dr. Michael Henry who will shares key data sets from his work...

See What's Possible with the PippinHT

Sage Science

Sep 14, 2021

Programmable DNA size selection enables new discoveries by helping optimize the library detected by a sequencer. That’s...

Magnetic resonance elastography techniques and preclinical applications

Bruker Biospin

Sep 14, 2021

It has been known for centuries that tissue stiffness can change in the presence of disease, but quantifying such...

Sep 28, 2021

Ex Vivo dental imaging is directly translatable to the clinic

Bruker Biospin

Sep 14, 2021

Although patients are too large in size for preclinical microCT scanners, it still has a big significance in clinical...

IncuCyte live cell analysis system for 3D Organoids discovery

Sartorius & Essen BioScience

Sep 10, 2021

Live-Cell Analysis has revolutionized numerous studies, with a wide selection of applications namely 3D Tumour Spheroid...

Introducing WOLF G2 - Benchtop microfluidic cell sorter

NanoCellect

Aug 31, 2021

The new WOLF G2 instrument has significantly expanded the capabilities of gentle benchtop microfluidic cell sorting...

Sep 28, 2021

Blood-Brain Barrier (BBB) - Pathophysiology in ischemic stroke

RWD

Aug 27, 2021

In-depth Understanding of Blood-Brain Barrier (BBB)

Show all topics (10)

Detection of bacteria in environmental waters using the NovoCyte flow cytometer

Apr 4, 2017

Traditional methods of bacterial identification are based on observations of either the morphology of single cells or colony characteristics when grown on agar. However, the microbes grown on agar medium with visible colonies are less than 1% of the total, and most bacteria, though obviously present and active, aren’t efficiently cultured. Flow cytometers with a high sensitivity of detection provide tools for detecting and analyzing microbes independent of their cultivability. The size, number, nucleic acid content, activity, and classification of bacteria can be derived from scattered light and fluorescence signals using flow cytometry. Applications utilizing microbial detection cover everything from drinking water /waste water system monitoring, industrial biotechnology, food and drug quality control, to soil and water microbial ecology. This method allows precise and rapid determinations of microbial bulk parameters and delivers detailed information on the general microbial state.

Read more

Scientific paper
Application
Product news

Related technologies: Conventional flow cytometry

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

The best in class personalized flow cytometer

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey