Accelerate to discover

Back to filter

Related topics

Curiox webinar: Laminar Wash enables single-cell multiomics and cell hashing

Curiox

Oct 11, 2021

Professor Mats Bemark’s lab at the University of Gothenburg in Sweden studies how the immune system responds to...

Blood-Brain Barrier (BBB) - Pathophysiology in ischemic stroke

RWD

Aug 27, 2021

In-depth Understanding of Blood-Brain Barrier (BBB)

Micro-CT user meeting 2021

Bruker Biospin

Aug 19, 2021

Year after year, the Micro-CT User meeting showcases state-of-the-art applications in both life and material sciences,...

Predicting single-cell gene expression with imaging flow cytometry data and machine learning

Luminex

Aug 10, 2021

High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying...

Oct 15, 2021

Recorded Webinar – the basics of Intravital Fluorescence Microscopy

IVIM Technology

Aug 6, 2021

This is the first of a 4-part series introducing Scintica’s newly formed relationship with IVIM Technology and their...

Webinar recording: Autofluorescence management - the power of Spectral Flow Cytometry

Cytek Biosciences

Jul 15, 2021

One of the key advantages of spectral flow cytometry is its ability to extract sample autofluorescence, making it much...

Oct 15, 2021

Webinar recording: Super-Resolution imaging of Chromatin organization in health and disease

ONI

Jul 6, 2021

Understanding how cells organize the array of components within their membranous confines can not only provide insight...

Show all topics (10)

Imaging of infection and tumors using labelled siderophores

Nov 15, 2017

Wednesday, December 6, 2017, 10 am CET, 5 pm CET.

Dr. Milos Petrik, Dr. Zbynek Novy, Institute of Molecular and Translational Medicine at Palacky University.

Siderophores are low-molecular weight, high affinity, iron-chelating ligands produced by many microorganisms as a means of acquiring iron. Iron is an essential nutrient in many cellular processes and therefore required for microbial proliferation and virulence. In iron-restricted conditions, some microorganisms produce large amounts of siderophores, which chelate free iron present in the environment and then carry it across the cell membrane, into the microorganism. Siderophores have demonstrated potential in the field of nuclear medical imaging; they can be labeled with radionuclides and used to detect microbial pathogens. Microbial cell specific transporters recognize and bind the radiolabelled siderophores, which are then taken up by the microbe. The pathogen can then be detected using nuclear imaging methods such as Positron Emission Tomography (PET). As well as infection imaging with siderophores, it is also possible to derivatize the siderophore molecule by conjugation of different targeting vectors such as peptides (eg. RGD and minigastrin) that have a high affinity for certain cell receptors and a near-infrared fluorophore enabling dual-modality imaging.
Join us at this webinar to learn more about these new experiences.

Register now

Webinar

Related technologies: PET, SPECT, CT

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 255 700 886

Send Message

Brand profile

Bruker Biospin

Bruker is a performace leader in preclinical imaging instrumentation. Bruker offers nine imaging modalities: PET, SPECT, CT, MRI, MPI, fluorescence, luminiscence, radioisotipic imaging and X-ray.

Related products

Albira combines PET, SPECT and CT imaging in a unique and extremely powerful way

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey