Accelerate to discover

Back to filter

Related topics

Hypoxia further exacerbates myopathy in broilers via alteration of satellite cell fate

COY laboratory products

Aug 2, 2021

Woody breast (WB) condition has created a variety of challenges for the global poultry industry. To date, there are no...

Introducing Celloger Mini: Automated and compact Live cell imaging inside your incubator

Curiosis

Jul 23, 2021

Celloger Mini is an automated live cell imaging system based on bright-field microscopy with fully motorized stages. 

High quality Bioluminescence and X-Ray analysis in lung squamous cell carcinoma

Spectral Instruments Imaging

Jul 21, 2021

Spectral Instruments Imaging provides unrivaled sensitivity for bioluminescence, fluorescence and X-Ray for in vivo...

Webinar recording: Autofluorescence management - the power of Spectral Flow Cytometry

Cytek Biosciences

Jul 15, 2021

One of the key advantages of spectral flow cytometry is its ability to extract sample autofluorescence, making it much...

Aug 3, 2021

Top 10 Pharma companies have chosen CYTEK for their flow cytometry facility

Cytek Biosciences

Jul 13, 2021

6 of Top 10 Pharma Companies (Based on total group revenues) have chosen CYTEK - full spectrum flow cytometer for their...

Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles

Spectral Instruments Imaging

Jun 23, 2021

Overactivation of the PI3K/mTOR signaling has been identified in non-Hodgkin’s lymphoma. BEZ235 is an effective dual...

Quantitative two-photon microscopy imaging analysis of human skin

IVIM Technology

Jun 21, 2021

Transdermal skin delivery is a method to transport various topical formulations to a deeper skin layer non-invasively....

Aug 3, 2021

Elevated NSD3 histone methylation activity drives squamous cell lung cancer

Spectral Instruments Imaging

Jun 8, 2021

This work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that...

Show all topics (10)

In-vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography

Feb 27, 2017

Muscle atrophy is a widespread ill condition occurring during inactivity, aging, and various diseases, including neuromuscular disorders, cancer, bacterial and viral infections, chronic lung and kidney diseases, diabetes, and drug side effects. The loss of muscle mass and function can reduce quality of life and increase morbidity and mortality. While exercise is today the only recognized counteracting measure to slow atrophy, a number of studies in the last decade have shed light on the underlying molecular mechanisms, paving the way for drug development. This later will require preclinical models and associated powerful techniques to evaluate trial outcomes. To date the measure of muscle atrophy in animal disease models usually requires animal sacrifice in order to weigh excised muscles and perform histological and biochemical studies. This approach is invasive and expensive involving the use of a large number of animals to obtain significant results. Therefore realizing a new, non invasive method allowing longitudinal in vivo evaluation of muscle atrophy would become an invaluable tool.
The ultrasonography is a non invasive diagnostic imaging technique based on the application of ultrasounds, which is widely used for various medical applications, including the quantification of structural and functional changes in skeletal muscles. In the recent years, the technique has been adapted to the preclinical setting, owing to the development of equipment able to work at high frequencies, from 40 to 100 MHz, and therefore suitable for high-resolution ultrasound evaluations on small animals such as rodents. While ultrasonography has been mostly used for tumor and cardiac investigations, there are currently only a few reports relative to its use for the evaluation of skeletal muscle structural and functional parameters in rodents. The aim of this study was to develop a non-invasive method to evaluate in vivo the volume variation of hindlimb muscle of rats, as a measure of skeletal muscle atrophy, using ultrasonography. To achieve this goal, there was performed a longitudinal ultrasonographic study of rat soleus (Sol) and gastrocnemius lateralis (Gas) muscle volume variation during a 14-days hindlimb-unloading (HU) period, which is a widely acknowledged model of disuse-induced muscle atrophy.

Read more

Scientific paper
Technical breakthrough

Related technologies: High frequency ultrasound imaging

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 255 700 886

Send Message

Brand profile

VisualSonics FujiFilm

FujiFilm VisualSonics Inc. is a manufacturer of real-time, in vivo, high-resolution micro-imaging systems designed specifically for preclinical research.

Related products

High-frequency ultrasound, designed for preclinical cardiac researchers

show detail

The first high-frequency, high-resolution digital imaging platform with linear array technology and Color Doppler Mode

show detail

A new and innovative platform combining ultra high-frequency ultrasound imaging, quantification and education

show detail

Photoacoustics is a ground-breaking, real time imaging modality for visualizing small animal anatomy and analyzing function in vivo and non-invasively

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey