Accelerate to discover

Back to filter

Related topics

Webinar recording: Deep dive into Spatial Biology with MERSCOPE Ultra Platform

Vizgen

Aug 16, 2024

We invite you to learn more about MERSCOPE Ultra Platform. Webinar featuring Rob Mathis (Global Instrument Product...

Single-Cell Genomics applications ? Ideal work for the WOLF gentle cell sorter

NanoCellect

Aug 2, 2024

The field of genomics and computational biology has progressed immensely over the last decade and new single-cell...

Scaling Whole-Genome Sequencing to >50,000 single cells using cellenONE

Cellenion

Jul 16, 2024

cellenONE technology enabled the creation of tens of thousands of high-quality single-cell genomes, paving the way for...

Theranostics: From Mice to Men and Back

MOLECUBES

Jun 25, 2024

Recorded webinar
Presenters: Prof. Dr. Ken Herrmann and Prof. Dr. Katharina Lückerath – Moderator: Hannah Notebaert

Oct 4, 2024

Orion 2024 AACR poster: 17-plex single-step stain and imaging of cell Lung Carcinoma

RareCyte

Jun 21, 2024

RareCyte Orion is a benchtop, high resolution, whole slide multimodal imaging instrument. A combination of quantitative...

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Oct 4, 2024

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Show all topics (10)

Monitoring of blood vessel density may facilitate early diagnosis of lymph node metastasis

Jun 26, 2017

Time-dependent alterations in the ultrasonography characteristics of lymph nodes during early-stage metastasis have not been compared with those of tumor-draining lymph nodes that do not develop tumor; this is partly due to the absence of an appropriate experimental model. In a previous study of lymph nodes with experimental early-stage metastasis, we used contrast-enhanced high-frequency ultrasound to demonstrate that an increase in lymph node blood vessel density preceded any changes in lymph node volume. In the present study, we used an experimental model of lymph node metastasis in which tumor cells metastasized from the subiliac lymph node to the proper axillary lymph node (the tumor-draining lymph node). We utilized contrast-enhanced high-frequency ultrasound to perform a longitudinal analysis of tumor-draining lymph nodes, comparing those at an early-stage of metastasis with those that did not develop detectable metastasis. We found that the normalized blood vessel density of an early-stage metastatic lymph node exhibited a progressive rise, whereas that of a tumor-draining lymph node not containing tumor began to increase later. For both types of lymph nodes, the normalized blood vessel density on the final day of experiments showed a trend towards being higher than that measured in controls. We further found that mice with an initially low value for lymph node blood vessel density subsequently showed a larger increase in the blood vessel density of the metastatic lymph node; this differed significantly from measurements in controls. The present study indicates that a longitudinal analysis of the blood vessel densities of tumor-draining lymph nodes, made using contrast-enhanced high-frequency ultrasound imaging, may be a potentially promising method for detecting early-stage lymph node metastasis in selected patients. Furthermore, our findings suggest that tumor in an upstream lymph node may induce alteration of the vascular structures in draining lymph nodes that do not contain tumor.

Read more

Scientific paper
Application

Related technologies: High frequency ultrasound imaging

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 210 323 421

Send Message

Brand profile

VisualSonics FujiFilm

FujiFilm VisualSonics Inc. is a manufacturer of real-time, in vivo, high-resolution micro-imaging systems designed specifically for preclinical research.

Related products

The first high-frequency, high-resolution digital imaging platform with linear array technology and Color Doppler Mode

show detail

A new and innovative platform combining ultra high-frequency ultrasound imaging, quantification and education

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey