Accelerate to discover

Back to filter

Related topics

Advances in Leukemia research using shear flow and Bioflux system

Fluxion Biosciences

Feb 3, 2023

Leukemia is a rare cancer with many subtypes. The production of abnormal leukocytes create disruptions in the immune...

Webinar: Dose Reduction and Image Enhancement in Preclinical Mouse Imaging using Deep Learning

MOLECUBES

Jan 31, 2023

In this webinar, ir. Florence Muller (Ghent University - University of Pennsylvania) is presenting two recent studies...

Advance your Spatial Biology, customize your panel design with RareCyte Orion reagents

RareCyte

Jan 23, 2023

Orion system, the highly multiplexed fluorescent imaging system, in combination with dedicated reagents, empower...

Extensive assessment of Cytokine production on the NovoCyte Advanteon flow cytometer

Agilent technologies

Jan 13, 2023

Cytokines are small molecules essential for immune cell response to activation by pathogens, autoimmunity, or...

Feb 4, 2023

New installation of Cytek Aurora in Slovenia

Cytek Biosciences

Jan 11, 2023

2nd spectral flowcytometer Aurora from Cytek was installed at National Institute of Biology in Slovenia

Microfluidic cell sorter sample preparation for genomic assays

NanoCellect

Dec 16, 2022

Single-cell RNA-Sequencing has led to many novel discoveries such as the detection of rare cell populations, microbial...

Introducing Cytek Cloud

Cytek Biosciences

Dec 1, 2022

Cytek Cloud is the new digital ecosystem that supports full spectrum flow cytometry research from panel design to data...

Feb 4, 2023

See More, Sort More with Cytek Full Spectrum Systems

Cytek Biosciences

Nov 28, 2022

Still wondering whether to join the shift to full spectrum cytometry?  Easily transfer assays from your Cytek Northern...

Show all topics (10)

Monitoring of blood vessel density may facilitate early diagnosis of lymph node metastasis

Jun 26, 2017

Time-dependent alterations in the ultrasonography characteristics of lymph nodes during early-stage metastasis have not been compared with those of tumor-draining lymph nodes that do not develop tumor; this is partly due to the absence of an appropriate experimental model. In a previous study of lymph nodes with experimental early-stage metastasis, we used contrast-enhanced high-frequency ultrasound to demonstrate that an increase in lymph node blood vessel density preceded any changes in lymph node volume. In the present study, we used an experimental model of lymph node metastasis in which tumor cells metastasized from the subiliac lymph node to the proper axillary lymph node (the tumor-draining lymph node). We utilized contrast-enhanced high-frequency ultrasound to perform a longitudinal analysis of tumor-draining lymph nodes, comparing those at an early-stage of metastasis with those that did not develop detectable metastasis. We found that the normalized blood vessel density of an early-stage metastatic lymph node exhibited a progressive rise, whereas that of a tumor-draining lymph node not containing tumor began to increase later. For both types of lymph nodes, the normalized blood vessel density on the final day of experiments showed a trend towards being higher than that measured in controls. We further found that mice with an initially low value for lymph node blood vessel density subsequently showed a larger increase in the blood vessel density of the metastatic lymph node; this differed significantly from measurements in controls. The present study indicates that a longitudinal analysis of the blood vessel densities of tumor-draining lymph nodes, made using contrast-enhanced high-frequency ultrasound imaging, may be a potentially promising method for detecting early-stage lymph node metastasis in selected patients. Furthermore, our findings suggest that tumor in an upstream lymph node may induce alteration of the vascular structures in draining lymph nodes that do not contain tumor.

Read more

Scientific paper
Application

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 210 323 421

Send Message

Brand profile

VisualSonics FujiFilm

FujiFilm VisualSonics Inc. is a manufacturer of real-time, in vivo, high-resolution micro-imaging systems designed specifically for preclinical research.

Related products

The first high-frequency, high-resolution digital imaging platform with linear array technology and Color Doppler Mode

show detail

A new and innovative platform combining ultra high-frequency ultrasound imaging, quantification and education

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey