Accelerate to discover

Back to filter

Related topics

Hypoxia further exacerbates myopathy in broilers via alteration of satellite cell fate

COY laboratory products

Aug 2, 2021

Woody breast (WB) condition has created a variety of challenges for the global poultry industry. To date, there are no...

High quality Bioluminescence and X-Ray analysis in lung squamous cell carcinoma

Spectral Instruments Imaging

Jul 21, 2021

Spectral Instruments Imaging provides unrivaled sensitivity for bioluminescence, fluorescence and X-Ray for in vivo...

Webinar recording: Autofluorescence management - the power of Spectral Flow Cytometry

Cytek Biosciences

Jul 15, 2021

One of the key advantages of spectral flow cytometry is its ability to extract sample autofluorescence, making it much...

Top 10 Pharma companies have chosen CYTEK for their flow cytometry facility

Cytek Biosciences

Jul 13, 2021

6 of Top 10 Pharma Companies (Based on total group revenues) have chosen CYTEK - full spectrum flow cytometer for their...

Aug 3, 2021

Introducing IZON Exoid: accurate analysis of nanoparticles from 1 to 1000 nm

IZON

Jul 7, 2021

The IZON Exoid is the only standardisable method of measuring the entire nano range (1–1000 nm).

Webinar recording: Super-Resolution imaging of Chromatin organization in health and disease

ONI

Jul 6, 2021

Understanding how cells organize the array of components within their membranous confines can not only provide insight...

Aug 3, 2021

Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles

Spectral Instruments Imaging

Jun 23, 2021

Overactivation of the PI3K/mTOR signaling has been identified in non-Hodgkin’s lymphoma. BEZ235 is an effective dual...

Show all topics (10)

Nanoparticle-uptake behavior in two standard cell lines, NIH/3T3 and A549

Feb 7, 2018

Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549) and mouse fibroblast (NIH/3T3) cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC) and propidium iodide (PI). We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs, using Etaluma Lumascope. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies.

Read more 

Scientific paper
Application

Related technologies: Live cell imaging

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Etaluma

With a focus on portability, ease of use, high-quality imaging and fast frame-rate, Etaluma developed new concept in simple, affordable, and accessible fluorescence microscopy.

Related products

The true color inverted brightfield microscopy with all of the LumaView software features of the fluorescent LumaScope

show detail

The original single color 488nm excitation fluorescence inverted microscopy

show detail

Lumascope 620 offers a larger sensor and 3-color fluorescence for the most powerful microscope offered anywhere at this price

show detail

Blue, green & red fluorescence and walk-away automation

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey