Accelerate to discover

Back to filter

Related topics

Top 10 Pharma companies have chosen CYTEK for their flow cytometry facility

Cytek Biosciences

Jun 21, 2021

6 of Top 10 Pharma Companies (Based on total group revenues) have chosen CYTEK - full spectrum flow cytometer for their...

Jun 21, 2021

Elevated NSD3 histone methylation activity drives squamous cell lung cancer

Spectral Instruments Imaging

Jun 8, 2021

This work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that...

IncuCyte webinar recording: How to measure Immune Cell Killing of Tumor Cells effectively

Sartorius

Jun 4, 2021

Immuno-oncology (IO) has transformed cancer treatment. The number of treatments in the IO pipeline continues to...

White Paper: Immunophenotyping Rare Immune Cells with Laminar Wash AUTO System

Curiox

Jun 3, 2021

The Laminar Wash (LW) AUTO system consists of a wall-less plate and a laminar flow cell washer that enable automated...

Jun 21, 2021

A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic

Tonbo Biosciences

Jun 3, 2021

Tonbo Biosciences flow cytometry reagents & antibodies are manufactured with the highest quality and precision and...

Show all topics (10)

Photodynamic therapy with hypoxia-activated prodrug

Apr 10, 2017

Photodynamic therapy (PDT), a noninvasive cancer therapeutic method triggered by light, would lead to severe tumor hypoxia after treatment. Utilizing a hypoxia- activated prodrug, AQ4N, which only shows toxicity to cancer cells under hypoxic environment, herein, a multipurpose liposome is prepared by encapsulating hydrophilic AQ4N and hydrophobic hexadecylamine conjugated chlorin e6 (hCe6), a photosensitizer, into its aqueous cavity and hydrophobic bilayer, respectively. After chelating a 64Cu isotope with Ce6, the obtained AQ4N-64Cu-hCe6-liposome is demonstrated to be an effective imaging probe for in vivo positron emission tomography, which together with in vivo fluorescence and photoacoustic imaging uncovers efficient passive homing of those liposomes after intravenous injection. After being irradiated with the 660 nm light-emitting diode light, the tumor bearing mice with injection of AQ4N-hCe6-liposome show severe tumor hypoxia, which in turn would trigger activation of AQ4N, and finally contributes to remarkably improved cancer treatment outcomes via sequential PDT and hypoxia- activated chemotherapy. This work highlights a liposome-based theranostic nanomedicine that could utilize tumor hypoxia, a side effect of PDT, to trigger chemotherapy, resulting in greatly improved efficacy compared to conventional cancer PDT.

Read more

Scientific paper
Application

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 255 700 886

Send Message

Brand profile

VisualSonics FujiFilm

FujiFilm VisualSonics Inc. is a manufacturer of real-time, in vivo, high-resolution micro-imaging systems designed specifically for preclinical research.

Related products

Photoacoustics is a ground-breaking, real time imaging modality for visualizing small animal anatomy and analyzing function in vivo and non-invasively

show detail

Vevo LAZR-X combines high frequency ultrasound and photoacoustics into one platform for high resolution anatomical, functional and molecular imaging

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey