Accelerate to Discover

Back to filter

Related topics

Method to quantify local force distribution within biomolecular systems

LUMICKS

May 24, 2018

The journal Nano Letters has recently published the article “Quantifying Local Molecular Tension Using Intercalated DNA...

Bionano fall user workshop

BioNano Genomics

May 23, 2018

We are happy to announce the Bionano Genomics’ 2018 user workshop taking place in San Diego on October 15-16,...

Registering FDG/PET mouse and AMYViD/PET-CT rat studies to brain VOI atlases

Bruker Biospin

May 22, 2018

Preclinical NeuroPET is employed widely in studies of stroke, ischemia, addiction and eurodegenerative diseases. In...

Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation

Etaluma

May 21, 2018

Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to...

May 28, 2018

New protocol: Analyze small extracellular RNAs with PippinHT

Sage Science

May 18, 2018

We’re pleased to see that PippinHT is featured heavily in the protocol for DNA sizing steps following PCR...

Genoox, Bionano collaborate to enhance the detection of pathogenic SVs

BioNano Genomics

May 14, 2018

Bionano is now working with the global health company Genoox to develop a genome informatics workflow to integrate and...

AVATAR Improves transfection efficiency with high viability

Xcell Biosciences

May 9, 2018

AVATAR lets you create any cell type even novel ones, with efficient transfection that improves reprogramming rates...

May 28, 2018

Creating a bold new future in ultrasound and photoacoustics

VisualSonics FujiFilm

May 4, 2018

Fujifilm VisualSonics has been chosen as one of the top 10 visualization solution providers in the field of developing...

Show all topics (10)

Preclinical cardiac safety assesment

Mar 22, 2016

Over the last two decades, a number of blockbuster drugs have been withdrawn or have incurred safety warnings by regulatory agencies due to adverse cardiac effects. In addition, lead compounds or drug candidates are frequently terminated at late stages of drug development due to cardiac safety concerns. Both of these factors can significantly impact the overall cost of drug discovery; consequently, pharmaceutical companies and regulatory agencies have implemented procedures to address these issues.

Most, if not all, in vitro assay systems for cardiac safety are designed to screen for surrogates of arrhythmia, such as hERG channel interaction, rather than arrhythmia itself. Assays designed to screen for compounds that may affect repolarization and induce arrhythmia in the context of the whole heart or heart tissue are not implemented until much later in drug development. These include sophisticated, technically demanding, lowthroughput, and costly procedures such as the Purkinje fiber assay, ventricular wedge assay, and the Langendorff whole heart assay, or telemetry experiments in live and anesthetized animals. The field of preclinical cardiac safety can certainly benefit from an assay system that allows for integrated assessment of compound action on ion channel and non-ion channel targets involved in cardiac excitation-contraction coupling.

The RTCA Cardio Instrument in conjunction with iCell Cardiomyocytes comprises an assay system providing integrated assessment of compound action on multiple targets involved in heart function. This assay system can sensitively and quantitatively detect the effect of compounds on the major ion channels involved in heart function, namely calcium, sodium, and potassium channels. Another major advantage of the assay system is the time resolution. The RTCA Cardio Instrument has a data acquisition rate of 12.5 ms per well of a 96-well plate and can be used simultaneously to monitor acute and chronic drug effects up to days and weeks. The utility of the time-dependent monitoring of compound action on cardiomyocytes can be demonstrated by testing compounds that acutely and directly block hERG channels (E4031, cisapride, etc.) and compounds that interfere with protein trafficking (pentamidine) in a sub-chronic manner. The RTCA Cardio Instrument is able to detect the effects of these compounds on the beating rate and duration of iCell Cardiomyocytes.

The xCELLigence System RTCA Cardio Instrument, in conjunction with iCell Cardiomyocytes, represents a physiologically relevant and predictive assay system for preclinical cardio-safety assessment of lead compounds. The features of this assay system, including time resolution, dynamic monitoring of mechanical beating activity of cardiomyocytes, and 96-well throughput, will surely provide additional mechanistic and toxicity information for compound action on the heart.

Application
Product news

Related technologies: Real-time, Label Free Cell Analysis

Brand profile

Acea Biosciences

ACEA manufactures xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey