Accelerate to discover

Back to filter

Related topics

Why ventilator so important in the battle against COVID-19?

RWD

Sep 21, 2020

The COVID-19 has caused shortages of medical devices in many countries, especially ventilators. Many companies around...

Discover the newly re-designed TissueGnostics portfolio

TissueGnostics

Sep 18, 2020

TissueGnostics is a solution provider for Precision Medicine and provides fully integrated cutting-edge tissue...

Imaging Performance of a multimodal module to enhance preclinical irradiator capabilities

Precision X-Ray

Sep 15, 2020

Upgrading an existing irradiator with such a multi-modal imaging device is a reasonable investment in laboratories...

Are you still using traditional methodologies for your Oncology cell metabolism studies?

Sartorius

Sep 10, 2020

In this infographic, learn about the challenges experienced by scientists in analysing cellular metabolism and how...

Sep 22, 2020

Using DNA repair and machine learning to improve cancer risk prediction

Luminex

Sep 7, 2020

Across the world, breast cancer continues to be the leading type of cancer in women, accounting for 25% of all cases....

Quantitative evaluation of pulmonary function with hyperpolarized xenon gas MR

Bruker Biospin

Aug 20, 2020

Hyperpolarized 129Xe MR has been proven to be a powerful tool to evaluate the pulmonary function and has been widely...

Get more out of your full spectrum panel with Cytek’s new reagent family

Cytek Biosciences

Aug 17, 2020

Cytek Biosciences has already redefined what is possible in flow cytometry. The new Cytek cFluor family of reagents...

Sep 22, 2020

Applications of Hyperpolarized 129Xe MRI for functional imaging of the lungs

Bruker Biospin

Aug 11, 2020

2015 marked the first ever translation of hyperpolarized gas MRI to diagnostic clinical practice. Research at the...

Show all topics (10)

Preclinical cardiac safety assesment

Mar 22, 2016

Over the last two decades, a number of blockbuster drugs have been withdrawn or have incurred safety warnings by regulatory agencies due to adverse cardiac effects. In addition, lead compounds or drug candidates are frequently terminated at late stages of drug development due to cardiac safety concerns. Both of these factors can significantly impact the overall cost of drug discovery; consequently, pharmaceutical companies and regulatory agencies have implemented procedures to address these issues.

Most, if not all, in vitro assay systems for cardiac safety are designed to screen for surrogates of arrhythmia, such as hERG channel interaction, rather than arrhythmia itself. Assays designed to screen for compounds that may affect repolarization and induce arrhythmia in the context of the whole heart or heart tissue are not implemented until much later in drug development. These include sophisticated, technically demanding, lowthroughput, and costly procedures such as the Purkinje fiber assay, ventricular wedge assay, and the Langendorff whole heart assay, or telemetry experiments in live and anesthetized animals. The field of preclinical cardiac safety can certainly benefit from an assay system that allows for integrated assessment of compound action on ion channel and non-ion channel targets involved in cardiac excitation-contraction coupling.

The RTCA Cardio Instrument in conjunction with iCell Cardiomyocytes comprises an assay system providing integrated assessment of compound action on multiple targets involved in heart function. This assay system can sensitively and quantitatively detect the effect of compounds on the major ion channels involved in heart function, namely calcium, sodium, and potassium channels. Another major advantage of the assay system is the time resolution. The RTCA Cardio Instrument has a data acquisition rate of 12.5 ms per well of a 96-well plate and can be used simultaneously to monitor acute and chronic drug effects up to days and weeks. The utility of the time-dependent monitoring of compound action on cardiomyocytes can be demonstrated by testing compounds that acutely and directly block hERG channels (E4031, cisapride, etc.) and compounds that interfere with protein trafficking (pentamidine) in a sub-chronic manner. The RTCA Cardio Instrument is able to detect the effects of these compounds on the beating rate and duration of iCell Cardiomyocytes.

The xCELLigence System RTCA Cardio Instrument, in conjunction with iCell Cardiomyocytes, represents a physiologically relevant and predictive assay system for preclinical cardio-safety assessment of lead compounds. The features of this assay system, including time resolution, dynamic monitoring of mechanical beating activity of cardiomyocytes, and 96-well throughput, will surely provide additional mechanistic and toxicity information for compound action on the heart.

Application
Product news

Related technologies: Real-time, label free cell analysis

Brand profile

Acea Biosciences

ACEA manufactures xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey