Up to now, the pre-clinical analysis of all these parameters has been hampered by the lack of both (1) a standardized, pure cardiac cell and tissue model to monitor cardiac-specific toxicity and (2) a suitable technology-platform for continuous, label-free analysis of cell function and integrity. These impediments are now addressed by the xCELLigence Real-Time Cell Analyzer (RTCA) System, in combination with pure cardiomyocytes generated from mouse embryonic stem cells.
To predict the pharmacological and toxicological effects of a drug, scientists use either recombinant cell systems such as cell lines expressing specific ion channels or primary cardiomyocytes prepared from, for example, neonatal rats. The disadvantages of these systems are that recombinant cell lines lack the physiological ion channel environment and functional humoral regulation. Freshly isolated primary cardiomyocytes, although showing physio-logical properties, are costly and time consuming to produce and difficult to standardize. Furthermore, the possibility of contamination with other cell types increases the variability of data and reduces the reliability of test results.
Read more