Accelerate to discover

Back to filter

Related topics

Cesium-137 versus X-ray irradiation preconditioning in immunodeficient NOG mice

Precision X-Ray

Dec 28, 2020

Radio-active sources have been used routinely for the preconditioning in humanized mouse models, but safety issues have...

EV imaging series: Using ONI super-resolution to characterize single-EVs

ONI

Dec 23, 2020

To date, researchers commonly use flow-based characterization methods, fluorescence imaging techniques and electron...

Don’t Let Waste Anesthetic Gases Harm You!

RWD

Dec 21, 2020

Many projects have been devoted to the study of the correlation between anesthetics and Alzheimer’s disease....

Coming in spring 2021, meet the Cytek Aurora CS

Cytek Biosciences

Dec 16, 2020

Ever wanted to take your full spectrum panel from your Cytek Aurora or Northern Lights cytometer and sort? Soon, you...

Dec 30, 2020

Advances in Leukemia research using shear flow and Bioflux system

Fluxion Biosciences

Dec 10, 2020

Leukemia is a rare cancer with many subtypes. The production of abnormal leukocytes create disruptions in the immune...

Do you have our CellRad benchtop irradiator? It’s the only one on the market!

Precision X-Ray

Dec 8, 2020

The CellRad is a smaller, simpler, safer, and more cost effective alternative to radioisotope or high-powered X-ray...

Dosimetric characterization of an X-ray irradiator for use with cells

Precision X-Ray

Dec 4, 2020

This study aims to characterize an X-ray irradiator for use with cells using its internal parallel-plate ionization...

Dec 30, 2020

Modeling multiple myeloma-Bone Marrow interactions using Synthecon rotating-wall vessels

Synthecon

Dec 2, 2020

Multiple myeloma develops primarily inside the bone marrow microenvironment, that confers pro-survival signals and drug...

Show all topics (10)

Real-time monitoring of adverse effects on cardiomyocytes derived from Embryonic Stem Cells

Nov 3, 2016

Up to now, the pre-clinical analysis of all these parameters has been hampered by the lack of both (1) a standardized, pure cardiac cell and tissue model to monitor cardiac-specific toxicity and (2) a suitable technology-platform for continuous, label-free analysis of cell function and integrity. These impediments are now addressed by the xCELLigence Real-Time Cell Analyzer (RTCA) System, in combination with pure cardiomyocytes generated from mouse embryonic stem cells.

To predict the pharmacological and toxicological effects of a drug, scientists use either recombinant cell systems such as cell lines expressing specific ion channels or primary cardiomyocytes prepared from, for example, neonatal rats. The disadvantages of these systems are that recombinant cell lines lack the physiological ion channel environment and functional humoral regulation. Freshly isolated primary cardiomyocytes, although showing physio-logical properties, are costly and time consuming to produce and difficult to standardize. Furthermore, the possibility of contamination with other cell types increases the variability of data and reduces the reliability of test results.

Read more

Scientific paper
Application
Product news

Related technologies: Real-time, label free cell analysis

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Agilent technologies

ACEA manufactures xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey