Accelerate to discover

Back to filter

Related topics

InAlyzer to evaluate G6PD activity in relation with frailty

MEDIKORS

Mar 28, 2023

InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...

Cardiomyocyte isolation using Cellenion’s cellenONE instrument

Cellenion

Mar 24, 2023

The cellenONE platform is ideal for the isolation of fragile and heterogeneous cell size populations, such as...

ACCELA educational webinar: Unlocking Spatial Biology with RareCyte Orion

RareCyte

Mar 16, 2023

Experience Spatial Biology with Orion Multiplex Imaging. Orion is a benchtop, high...

Recorded webinar: Anesthesia Considerations in Small Animal Imaging

Spectral Instruments Imaging

Mar 13, 2023

Anesthesia settings and operation of Optical Imaging Systems: methods, animal handling, safety and regulatory...

Apr 2, 2023

Introducing Cytek Human Leukocyte Kit, the first ever 15-color lyse no-wash assay

Cytek Biosciences

Mar 13, 2023

This kit has been designed to enumerate all major leukocyte subsets and it mirrors and expands on those identified in a...

Immunofluorescence Imaging for Rare Cell Detection with CyteFinder II

RareCyte

Mar 7, 2023

CyteFinder II Instruments are high speed, whole slide imaging systems with options for liquid biopsy analysis and...

NanoCellect Webinar: Optimizing the Cell Line Development Process with Microfluidic Cell Sorting

NanoCellect

Mar 3, 2023

Single-cell selection and cloning are required for bioengineering workflows such as antibody production, cell therapy,...

Apr 2, 2023

New Kit for Bacterial analysis expands capability of Guava Muse flow cytometer

Luminex

Feb 20, 2023

With the Guava Muse cell analyzer, you can now achieve highly quantitative results at a fraction of the price, effort,...

Show all topics (10)

Real-time monitoring of adverse effects on cardiomyocytes derived from Embryonic Stem Cells

Nov 3, 2016

Up to now, the pre-clinical analysis of all these parameters has been hampered by the lack of both (1) a standardized, pure cardiac cell and tissue model to monitor cardiac-specific toxicity and (2) a suitable technology-platform for continuous, label-free analysis of cell function and integrity. These impediments are now addressed by the xCELLigence Real-Time Cell Analyzer (RTCA) System, in combination with pure cardiomyocytes generated from mouse embryonic stem cells.

To predict the pharmacological and toxicological effects of a drug, scientists use either recombinant cell systems such as cell lines expressing specific ion channels or primary cardiomyocytes prepared from, for example, neonatal rats. The disadvantages of these systems are that recombinant cell lines lack the physiological ion channel environment and functional humoral regulation. Freshly isolated primary cardiomyocytes, although showing physio-logical properties, are costly and time consuming to produce and difficult to standardize. Furthermore, the possibility of contamination with other cell types increases the variability of data and reduces the reliability of test results.

Read more

Scientific paper
Application
Product news

Related technologies: Real-time, label free cell analysis

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey