The company provides a revolutionary cell culturing platform that replicates the physiological environment of native tissues to deliver reproducible and biologically relevant molecular analysis.
Accelerate to discover
Related topics
Recent publication of in-vivo two-photon intravital imaging study targeting mouse kidney
May 22, 2023
In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal
formation and...
Webinar: Multimodal tissue imaging and machine learning to advance precision medicine
May 17, 2023
Join us for this webinar to learn how the Orion spatial biology imaging platform was used to identify prognostic...
May 5, 2023
Decision to improve the output in a lab is always taken based on knowledge and workflow needs. But final decision to...
Real-Time and Quantitative Analysis of Macrophage Phagocytosis with RTCA eSight
May 4, 2023
The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance...
Revolutionize your Flow Cytometry and Sorting workflow with Cytek Biosciences
May 3, 2023
Using full spectrum flow cytometry, Cytek systems ( RUO and CE-IVD) detect the entire fluorochrome emission, allowing...
A deep learning and Monte Carlo based framework for bioluminescence imaging center Maastro
Apr 20, 2023
"In this paper,we developed a framework using deep learning for bioluminescence-based targeting for GBM animal...
Gentle sorting of microbial cells and sub-micron particles using WOLF sorter
Apr 18, 2023
While most modern applications of flow cytometry may focus on cells of eukaryotic origin, the first flow analyzers were...
Nov 29, 2017
While extensive research has focused on soluble factors to optimize stem cell culture, conditions such as hypoxia, atmospheric pressure, and the composition and organization of the extracellular matrix are also important drivers of stem cell differentiation and cell function. However, no study to date has systematically analyzed the contribution of these factors in the maintenance and differentiation of stem cells, leading to uncertainty surrounding the extracellular factors that dictate stem cell state.To address this, Xcell Biosciences has developed a novel stem cell culturing platform, the Avatar SystemTM, which allows for tunable control of the microenvironment and uniquely offers customizable settings for oxygen and hydrostatic pressure. In a recent study, Xcell scientists analyzed human pluripotent stem cells to characterize their underlying biology and to demonstrate the utility of the Avatar system. Cells were cultured in minimally supportive media to allow stem cell state to drift. The Avatar system was used to tune environmental conditions and determine the impact of oxygen tension and pressure in guiding stem cell fate.
For this project, scientists reprogrammed primary human dermal fibroblasts via episomal expression of key stemness factors (Sox2, Nanog, and Oct4) while cultured in altered oxygen concentration (1% – 5%) and atmospheric pressure (0 PSI – 5 PSI) using the Avatar system compared to conventional culture methods. Having generated iPSCs, scientists next aimed to assess their pluripotent potential relative to the condition in which reprogramming and subsequent long term culture was performed.
Related technologies: Physiological cell culturing
Get more info
Brand profile
The company provides a revolutionary cell culturing platform that replicates the physiological environment of native tissues to deliver reproducible and biologically relevant molecular analysis.
More info at:
www.xcellbio.com