Accelerate to discover

Back to filter

Related topics

Introducing Cytek Cloud

Cytek Biosciences

Dec 1, 2022

Cytek Cloud is the new digital ecosystem that supports full spectrum flow cytometry research from panel design to data...

See More, Sort More with Cytek Full Spectrum Systems

Cytek Biosciences

Nov 28, 2022

Still wondering whether to join the shift to full spectrum cytometry?  Easily transfer assays from your Cytek Northern...

Demonstrate the value of RareCyte Orion system via web-based Minerva viewer

RareCyte

Nov 25, 2022

The HTA CRC Atlas X dataset contains images and other data being used for construction of an atlas of human colorectal...

All inside your incubator: xCELLigence eSight

Agilent technologies

Nov 3, 2022

Multiplex Live cell imaging and real-time biosensor measurement with xCELLigence eSight

Dec 9, 2022

Download the newest AVATAR data presented at CAR-TCR

Xcell Biosciences

Oct 21, 2022

Xcell Bio CSO, James Lim, presented new data showcasing improved potency of AVATAR-expanded CAR T cells and highlighted...

RareCyte Orion system advances Multi-modal digital pathology for colorectal cancer diagnosis

RareCyte

Oct 19, 2022

Precision medicine is critically dependent on better methods for diagnosing and staging disease and predicting drug...

Introducing MARS system : revolutionary solution for your workflow of cell separation and enrichment

Applied Cells

Oct 7, 2022

The MARS family of instruments provides a breakthrough solution to complete the workflow of cell separation and...

Dec 9, 2022

AMI HTX installation in CEMEX Iasi, Romania

Spectral Instruments Imaging

Sep 30, 2022

Presentation movie

Show all topics (10)

De novo assembly and phasing of a Korean human genome

Nov 18, 2016

Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 using single-molecule real-time sequencing2, next-generation mapping3, microfluidics-based linked reads4, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of unreported and Asian-specific structural variants, and high-quality haplotyping of clinically relevant alleles for precision medicine.

Read more

Scientific paper
Technical breakthrough
Product news

Get more info

Regina Fillerová

Field application specialist

Regina

Fillerová

+420 731 127 718

Send Message

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey