Accelerate to Discover

Back to filter

Related topics

Method to quantify local force distribution within biomolecular systems

LUMICKS

May 24, 2018

The journal Nano Letters has recently published the article “Quantifying Local Molecular Tension Using Intercalated DNA...

Registering FDG/PET mouse and AMYViD/PET-CT rat studies to brain VOI atlases

Bruker Biospin

May 22, 2018

Preclinical NeuroPET is employed widely in studies of stroke, ischemia, addiction and eurodegenerative diseases. In...

Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation

Etaluma

May 21, 2018

Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to...

New protocol: Analyze small extracellular RNAs with PippinHT

Sage Science

May 18, 2018

We’re pleased to see that PippinHT is featured heavily in the protocol for DNA sizing steps following PCR...

May 28, 2018

Genoox, Bionano collaborate to enhance the detection of pathogenic SVs

BioNano Genomics

May 14, 2018

Bionano is now working with the global health company Genoox to develop a genome informatics workflow to integrate and...

Outstanding return on investment with the xxpress qPCR thermal cycler

BJS Biotechnologies

May 10, 2018

Find out just how much money you could save by switching to the xxpress qPCR thermal cycler,visit the cost savings...

AVATAR Improves transfection efficiency with high viability

Xcell Biosciences

May 9, 2018

AVATAR lets you create any cell type even novel ones, with efficient transfection that improves reprogramming rates...

May 28, 2018

Creating a bold new future in ultrasound and photoacoustics

VisualSonics FujiFilm

May 4, 2018

Fujifilm VisualSonics has been chosen as one of the top 10 visualization solution providers in the field of developing...

Show all topics (10)

Genome-wide structural variation detection by genome mapping on nanochannel arrays

Jun 14, 2016

„Comprehensive whole genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole genome structural variation detection without sequencing. While whole genome haplotyping is not achieved, local phasing (across >150 kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variation that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation.“ Mak et al. (2015): Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays. In Genetics. 2015

Read more

Scientific paper
Application

Related technologies: Genome Mapping

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey