Accelerate to discover

Back to filter

Related topics

Bruker announces acquisition of preclinical and molecular imaging research software provider PMOD

Bruker Biospin

Aug 19, 2019

The PMOD software is widely used for the analysis of positron emission tomography (PET) studies in neurology,...

Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome

Sage Science

Aug 16, 2019

The BluePippin was used for High Pass DNA size selection prior to library construction. ONT Promethion was used for...

Next-generation cytogenetics is here

BioNano Genomics

Aug 9, 2019

On ESHG 2019 conference several oral and poster presentations compared Bionano optical mapping to clinical cytogenetics...

Electroporation using Lumascope: A sustainable method for Adipogenous Mesenchymal Stem Cells

Etaluma

Aug 7, 2019

Human mesenchymal stem cells derived from adipose tissue (AD-hMSCs) represent a promising source for tissue engineering...

Aug 20, 2019

The best way to fragment DNA for genomic and paired end library construction

Digilab

Aug 5, 2019

Digilab NextGen Shear DNA Shearing offers the simplest, most reproducible, and most controllable method available for...

Software Update: Bionano releases a new pipeline for low Aalelic fraction SVs

BioNano Genomics

Jul 31, 2019

Bionano Solve v3.4 is a major update that introduces an entirely new pipeline to detect SVs at low allelic fraction and...

On-cartridge preparation and evaluation of 68Ga-, 89Zr- and 64Cu-precursors for cell radiolabelling

Bruker Biospin

Jul 29, 2019

Method of on-cartridge formation of gallium-68, zirconium-89 and copper-64 complexes in small volumes suitable for cell...

Aug 20, 2019

CQ1 confocal quantitative image cytometer: fighting colon cancer with killer cells

Yokogawa

Jul 2, 2019

Genetically modified immune cells can successfully destroy colon cancer cells. This has been demonstrated for the first...

Show all topics (10)

High-throughput imaging: focusing in on drug discovery in 3D

Jun 14, 2017

3D organotypic culture models such as organoids and multicellular tumor spheroids (MCTS) are becoming more widely used for drug discovery and toxicology screening. As a result, 3D culture technologies adapted for high-throughput screening formats are prevalent. While a multitude of assays have been reported and validated for high-throughput imaging (HTI) and high-content screening (HCS) for novel drug discovery and toxicology, limited HTI/HCS with large compound libraries have been reported. Nonetheless, 3D HTI instrumentation technology is advancing and this technology is now on the verge of allowing for 3D HCS of thousands of samples. This review focuses on the state-of-the-art high-throughput imaging systems, including hardware and software, and recent literature examples of 3D organotypic culture models employing this technology for drug discovery and toxicology screening.

Read more

Scientific paper

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Sartorius

Essen BioScience (part of Sartorius), is a team of engineers and biologists with deep expertise in cell-based assays. We invent, manufacture, supply and support cell-based assay instrumentation, reagents and protocols.

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey