Accelerate to discover

Back to filter

Related topics

Webinar: Join us for an In-Depth Look at the Revolutionary Small Animal Radiotherapy System at STTARR

Precision X-Ray

Aug 17, 2023

Register for an engaging webinar led by Naz Chaudary, Ph.D., and Research Technician, Alex Wang from the...

Optimizing Gene Expression with Bioluminescence & the piggyBac System

Spectral Instruments Imaging

Aug 15, 2023

Discover how bioluminescence imaging & the piggyBac gene editing system optimize & track gene expression in mouse...

High-plex immunofluorescence imaging and traditional histology of the same tissue section

RareCyte

Aug 7, 2023

RareCyte Orion’ platform has been used for collecting H&E and high-plex immunofluorescence images from the same cells...

Single cell-resolution in situ sequencing elucidates spatial dynamics of multiple sclerosis

Vizgen

Jul 14, 2023

MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, fluidics, image processing,...

Sep 30, 2023

MARS - High Efficiency Separation of CD34+ HSC from Mobilized Blood

Applied Cells

Jul 12, 2023

MARS platform provides an easy and cost-effective protocol for CD34+ cell isolation. Single pass CD34+ HSC enrichment...

43 markers, ONE tube : Impress yourself with Cytek Aurora Spectral Cytometer

Cytek Biosciences

Jul 11, 2023

Using Cytek full spectrum flow cytometry, scientists at Hamad Medical Corporation, developed a 43 color panel to...

InAlyzer - The technology chosen by NASA

MEDIKORS

Jul 10, 2023

MEDIKORS's InAlyzer was finally selected as the equipment to be used for NASA's space environment biological research

Sep 30, 2023

PET from Molecubes for imaging of neuroendocrine tumors

MOLECUBES

Jun 28, 2023

Direct comparison of [18F]AlF-NOTA-JR11 and [18F]AlF-NOTA-octreotide for PET imaging of neuroendocrine tumors:...

Show all topics (10)

Imaging flow cytometry for automated detection of Hypoxia-Induced Erythrocyte shape change

Oct 31, 2016

We developed a new sickle imaging flow cytometry assay (SIFCA) and investigated its application. To perform the SIFCA, peripheral blood was diluted, deoxygenated (2% oxygen) for 2 hr, fixed, and analyzed using imaging flow cytometry. We developed a software algorithm that correctly classified investigator tagged "sickled" and "normal" erythrocyte morphology with a sensitivity of 100% and a specificity of 99.1%. The percentage of sickled cells as measured by SIFCA correlated strongly with the percentage of sickle cell anemia blood in experimentally admixed samples (R = 0.98, P ≤ 0.001), negatively with fetal hemoglobin (HbF) levels (R = -0.558, P = 0.027), negatively with pH (R = -0.688, P = 0.026), negatively with pretreatment with the antisickling agent, Aes-103 (5-hydroxymethyl-2-furfural) (R = -0.766, P = 0.002), and positively with the presence of long intracellular fibers as visualized by transmission electron microscopy (R = 0.799, P = 0.002). This study shows proof of principle that the automated, operator-independent SIFCA is associated with predictable physiologic and clinical parameters and is altered by the putative antisickling agent, Aes-103. SIFCA is a new method that may be useful in sickle cell drug development.

Read more

Scientific paper

Related technologies: Imaging flow cytometry

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Amnis

Amnis has created the ImageStream Cell Analysis System, a breakthrough technology for high speed imaging and analysis of cells in flow.

Related products

Combine the speed and statistical power of flow cytometry with microscopy

show detail

Flow cytometer capable of high resolution microscopic assays

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey