A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
Accelerate to discover
Related topics
The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis
Nov 30, 2023
The SageHLS instrument was used to size select DNA between 50-80 kb for 10X Genomics Chromium linked read analysis.
Factors Affecting Petri Dish Condensation in Tissue Culture (CU) Chambers
Nov 29, 2023
In this report, we will investigate the effects of infrared lighting, light intensity, stacking, as well as constant...
Visualization of spatial distribution of hemoglobin with various oxygen saturations in small animals
Nov 28, 2023
With the aid of our uniquely developed device and analysis software, our primary objective is to map the spatial...
A fluorescent reporter system for anaerobic thermophiles
Nov 27, 2023
Anaerobic microorganisms are key effectors for the sustainable production of biofuels and biochemicals, as they...
Vizgen webinar: spatial relationships in Developmental Biology
Nov 21, 2023
MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, In this webinar we will...
Nov 14, 2023
The xCELLigence RTCA eSight enables simultaneous real time biosensor impedance-based and...
NanoCellect webinar: Plant Potential - Gentle Cell Sorting for Enhanced Plant Biology Workflows
Nov 3, 2023
Gentle cell sorting is a useful tool to increase the efficiency of plant biology workflows that include gene...
Single Cell Deposition: the cornerstone of Flow Cytometry for cellular analysis and manipulation
Nov 2, 2023
One notable technology for harnessing the power of single cell deposition is the NanoCellect WOLF G2 Cell Sorter and N1...
Mar 15, 2016
Despite recent advances in base-calling accuracy and read length, de novo genome assembly and structural variant analysis using ‘short read’ shotgun sequencing remain challenging. Most resequencing projects rely on mapping the sequencing data to the reference sequence to identify variants of interest. Whole-genome scanning techniques have revealed the prevalence and importance of structural variation. Detecting copy number variation often relies on detection of relative signal intensities by array-based or quantitative PCR-based technologies. However, except for deletions, these methods do not provide positional information regarding the locations of copy number variants, and they cannot detect balanced structural variation, such as inversions or translocations.. The instrumentation presented by BioNano Genomics can improve de novo sequence assembly by providing long labeled DNA contigs with so far unknown structural variations.
Brand profile
A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
More info at:
www.bionanogenomics.com