Optical tweezers, Confocal microscopy, STED nanoscopy, Acoustic force spectroscopy for single-molecule biophysics.
Accelerate to discover
Related topics
The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis
Nov 30, 2023
The SageHLS instrument was used to size select DNA between 50-80 kb for 10X Genomics Chromium linked read analysis.
Factors Affecting Petri Dish Condensation in Tissue Culture (CU) Chambers
Nov 29, 2023
In this report, we will investigate the effects of infrared lighting, light intensity, stacking, as well as constant...
Visualization of spatial distribution of hemoglobin with various oxygen saturations in small animals
Nov 28, 2023
With the aid of our uniquely developed device and analysis software, our primary objective is to map the spatial...
A fluorescent reporter system for anaerobic thermophiles
Nov 27, 2023
Anaerobic microorganisms are key effectors for the sustainable production of biofuels and biochemicals, as they...
Vizgen webinar: spatial relationships in Developmental Biology
Nov 21, 2023
MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, In this webinar we will...
NanoCellect webinar: Plant Potential - Gentle Cell Sorting for Enhanced Plant Biology Workflows
Nov 3, 2023
Gentle cell sorting is a useful tool to increase the efficiency of plant biology workflows that include gene...
Single Cell Deposition: the cornerstone of Flow Cytometry for cellular analysis and manipulation
Nov 2, 2023
One notable technology for harnessing the power of single cell deposition is the NanoCellect WOLF G2 Cell Sorter and N1...
Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system
Oct 31, 2023
Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...
May 24, 2018
By using optical tweezers coupled with fluorescence microscopy, Dr. King et al. (2018) studied the ability of cyanine intercalator dyes to quantify the molecular tension within biomolecular structures. They found that intercalators can be used in biomolecular systems in real-time to measure the tension locally and to determine how applied forces are partitioned. As an example, the authors demonstrated that stretched and entwined DNA structures can generate transient DNA-DNA interactions that mimic DNA bridges, by measuring the tension and local force distribution within the structures.
Get more info
Brand profile
Optical tweezers, Confocal microscopy, STED nanoscopy, Acoustic force spectroscopy for single-molecule biophysics.
More info at:
www.lumicks.com