Mauna Kea Technologies manufactures Cellvizio Lab, confocal probe based imaging system, providing cellular-level images with minimal invasiveness for longitudinal studies.
Accelerate to discover
Related topics
Vizgen webinar: spatial relationships in Developmental Biology
Nov 21, 2023
MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, In this webinar we will...
Nov 14, 2023
The xCELLigence RTCA eSight enables simultaneous real time biosensor impedance-based and...
NanoCellect webinar: Plant Potential - Gentle Cell Sorting for Enhanced Plant Biology Workflows
Nov 3, 2023
Gentle cell sorting is a useful tool to increase the efficiency of plant biology workflows that include gene...
Single Cell Deposition: the cornerstone of Flow Cytometry for cellular analysis and manipulation
Nov 2, 2023
One notable technology for harnessing the power of single cell deposition is the NanoCellect WOLF G2 Cell Sorter and N1...
Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system
Oct 31, 2023
Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...
Single Cell Deposition: the cornerstone of Flow Cytometry for cellular analysis and manipulation
Oct 30, 2023
One notable technology for harnessing the power of single cell deposition is the NanoCellect WOLF G2 Cell Sorter and N1...
Validation of an orthotopic non-small cell lung cancer mouse model to use in radiotherapy studies
Oct 30, 2023
The use of pre-clinical orthotopic mouse models is essential for the development of novel therapies targeting solid...
Atypical Teratoid Rhabdoid Tumours Are Susceptible to Panobinostat-Mediated Differentiation Therapy
Oct 20, 2023
To assess tumour growth, mice were imaged using the AMI-HTX bioluminescent imaging system (Spectral Instruments...
Jul 28, 2017
In the present study, the research team dissected the role of platelet αIIb integrin (GPIIb) for early and late steps in pulmonary melanoma metastasis. They first addressed in vitro potential mechanisms for initial recruitment of circulating melanoma cells to vascular endothelium using a flow chamber model and then assessed the role of GPIIb for metastasis formation in vivo in mice lacking integrin αIIb (GPIIb-/-). GPIIb associates with GPIIIa (integrin β3) to form the platelet-specific integrin heterodimer GPIIb-IIIa (integrin αIIbβ3), representing the most abundant platelet surface receptor and predominantly functioning as platelet fibrinogen receptor. By binding to fibrinogen, but also to von Willebrand factor, GPIIb-IIIa mediates cross-linking of adjacent platelets, resulting in platelet aggregation and platelet secretion of chemokines as well as growth factors. Moreover, binding of GPIIb-IIIa to fibronectin, vitronectin or PECAM-1 leads to platelet adhesion to the vessel wall. In order to follow the initial steps of tumor metastasis in wildtype (WT) and GPIIb-deficient mice, they applied a novel microscopic approach using a fluorescence optical imaging system based on laser scanning confocal technology.
They showed that the acute retention of malignant melanoma cells is dramatically reduced in mice deficient in platelet GPIIb and also they found that GPIIb has a minor effect of adhesion of single melanoma cells, but rather mediates the formation of platelet-rich melanoma cell aggregates, which are retained in the pulmonary vasculature.
Get more info
Brand profile
Mauna Kea Technologies manufactures Cellvizio Lab, confocal probe based imaging system, providing cellular-level images with minimal invasiveness for longitudinal studies.
More info at:
www.cellviziolab.com/