Preparative electrophoresis systems for targeted size selection of biomolecules.
Accelerate to discover
Related topics
Recent publication of in-vivo two-photon intravital imaging study targeting mouse kidney
May 22, 2023
In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal
formation and...
Webinar: Multimodal tissue imaging and machine learning to advance precision medicine
May 17, 2023
Join us for this webinar to learn how the Orion spatial biology imaging platform was used to identify prognostic...
May 5, 2023
Decision to improve the output in a lab is always taken based on knowledge and workflow needs. But final decision to...
Real-Time and Quantitative Analysis of Macrophage Phagocytosis with RTCA eSight
May 4, 2023
The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance...
Revolutionize your Flow Cytometry and Sorting workflow with Cytek Biosciences
May 3, 2023
Using full spectrum flow cytometry, Cytek systems ( RUO and CE-IVD) detect the entire fluorochrome emission, allowing...
A deep learning and Monte Carlo based framework for bioluminescence imaging center Maastro
Apr 20, 2023
"In this paper,we developed a framework using deep learning for bioluminescence-based targeting for GBM animal...
Gentle sorting of microbial cells and sub-micron particles using WOLF sorter
Apr 18, 2023
While most modern applications of flow cytometry may focus on cells of eukaryotic origin, the first flow analyzers were...
Oct 9, 2018
This approach, known as HLS-CATCH, allows users to apply long-range genomics to their gene or genomic region of interest, characterizing and phasing not only single nucleotide variants but also large structural variants including deletions, inversions, and translocations.
The HLS-CATCH+10x Genomics workflow is cost-effective. For instance, a 200Kb target can be isolated using HLS-CATCH with as few as two custom Cas9 complexes, whereas hybridization-capture methods would require hundreds to thousands of probes. In addition, because of the complementarity between the HLS-CATCH method and the 10x Chromium library system, sequencing reagent costs to achieve 100x phased target coverage are more than 10-fold lower than that required to obtain 100x phased whole genome data.
Related technologies: Targeted DNA/protein size collection
Get more info
Brand profile
Preparative electrophoresis systems for targeted size selection of biomolecules.
More info at:
www.sagescience.com/