Accelerate to discover

Back to filter

Related topics

Extensive assessment of Cytokine production on the NovoCyte Penteon flow cytometer

Agilent technologies

Nov 23, 2021

Cytokines are small molecules essential for immune cell response to activation by pathogens, autoimmunity, or...

Discover the advanced Detector Technology in Agilent NovoCyte flow cytometers

Agilent technologies

Nov 8, 2021

This technical overview describes advancements in detector technology, and highlights examples where optimal signal...

Jan 18, 2022

X-ray-virus-inactivation

Precision X-Ray

Oct 20, 2021

Ionizing radiation approaches are effective but use of radioactive radioisotopic elements have become difficult to...

Duke uses XRAD 225 CX to test radiosensitivity hypothesis

Precision X-Ray

Oct 18, 2021

Image guided radiotherapy in a preclinical setting couldn’t be more useful than the treatment of brain tumors, where...

Curiox webinar: Laminar Wash enables single-cell multiomics and cell hashing

Curiox

Oct 11, 2021

Professor Mats Bemark’s lab at the University of Gothenburg in Sweden studies how the immune system responds to...

Jan 18, 2022

Falling in love with Magnetic resonance

Bruker Biospin

Oct 4, 2021

Magnetic Resonance (MR) is more than just analytical science, it is unique, it is a passion that won’t let you go

Show all topics (10)

Tina Graves webinar - challenges faced in human whole genome assembly

May 4, 2016

Traditionally, generating a whole-genome physical or genetic map has been one of the first steps in exploring genomes. Long-range information is crucial to the accurate understanding of relationships between functional elements in the genome and making sense of more detailed follow-on experiments.
Many current high-throughput genomic technologies start by fragmenting and amplifying DNA. This necessity often sacrifices vital long-range connectivity, causing researchers to miss many structural variants, including rearrangements, inversions and copy-number variants, which lead to inaccurately sized gaps.

Genome maps can contribute greatly to improving contiguity, accurately identifying gaps and revealing missed structural variation, even after a substantial amount of sequencing has been conducted. To achieve higher-quality genome analysis and comprehensive views of variation, a complete genome map is essential.

Tina Graves will describe how she has used the Irys genome maps to improve the CHM1 single haplotype human whole genome assembly. These genome maps have helped discover assembly errors, size gaps and confirm previously unsure regions of the assembly.

VIEW WEBINAR

Application
Webinar

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey