Accelerate to discover

Back to filter

Related topics

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Exosome-Mediated Delivery of Small Molecules, RNA & DNA for Development of Novel Cancer Therapeutics

Spectral Instruments Imaging

Jun 3, 2024

Disha Moholkar of University of Louisville's Gupta Lab
Tuesday, June 11, 2024, 6:30 PM
...

Jun 18, 2024

Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system

Cell Microsystems

May 27, 2024

Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...

High-frequency Ultrasound System For Preclinical Imaging

S-Sharp

May 13, 2024

The Prospect T1 is an innovative high-frequency ultrasound system designed specifically for in vivo preclinical imaging...

“Range+T “ for Tight Sizing of HMW Libraries

Sage Science

May 10, 2024

We decided to do a deep dive into Range+T to get a better handle the method, and to develop best practices for using...

Jun 18, 2024

April 2024 publication revealing benefits of using intravital microscopy in trascriptomics studies

IVIM Technology

May 8, 2024

Transcriptional activation of Bmal1 drives the inflammatory activity of monocytes by modulating mitochondrial unfolded...

Show all topics (10)

Tina Graves webinar - challenges faced in human whole genome assembly

May 4, 2016

Traditionally, generating a whole-genome physical or genetic map has been one of the first steps in exploring genomes. Long-range information is crucial to the accurate understanding of relationships between functional elements in the genome and making sense of more detailed follow-on experiments.
Many current high-throughput genomic technologies start by fragmenting and amplifying DNA. This necessity often sacrifices vital long-range connectivity, causing researchers to miss many structural variants, including rearrangements, inversions and copy-number variants, which lead to inaccurately sized gaps.

Genome maps can contribute greatly to improving contiguity, accurately identifying gaps and revealing missed structural variation, even after a substantial amount of sequencing has been conducted. To achieve higher-quality genome analysis and comprehensive views of variation, a complete genome map is essential.

Tina Graves will describe how she has used the Irys genome maps to improve the CHM1 single haplotype human whole genome assembly. These genome maps have helped discover assembly errors, size gaps and confirm previously unsure regions of the assembly.

VIEW WEBINAR

Application
Webinar

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey