Accelerate to Discover

Back to filter

Related topics

How to build the largest genome ever, in 3 easy steps

BioNano Genomics

Feb 23, 2018

Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined...

High-throughput observation of molecular motor activity & dynamics

LUMICKS

Feb 21, 2018

With LUMICKS’ C-Trap, it is possible to observe myosin activity,the processive motion, the binding kinetics along...

X-RAD SmART

Precision X-Ray

Feb 20, 2018

The X-RAD SmART Image Guided Irradiator for small animals provides the most advanced and accurate treatment...

xxcloud – thermal cycler software

BJS Biotechnologies

Feb 16, 2018

Tired of waiting in line to use a qPCR system? The wait is over… the xxcloud is here! The xxcloud is exciting new...

Feb 25, 2018

BioNano mapping outperforms existing clinical tests in Duchenne´s muscular dystrophy patients

BioNano Genomics

Feb 15, 2018

In a publication in Genome Medicine, a team of researchers from Children’s National Health Center and University of...

Label-free, real-time live-cell assays for spheroids: IncuCyte bright-field analysis

Sartorius

Feb 12, 2018

A  growing  body  of  evidence  suggests  that  more  relevant  and  translational  observations  can  be  made  with ...

Measuring absolute blood perfusion in mice using dynamic contrast-enhanced ultrasound

VisualSonics FujiFilm

Feb 8, 2018

Contrast-enhanced ultrasound imaging involves the injection of gas-filled microbubbles that do not extravasate. This...

Feb 25, 2018

Nanoparticle-uptake behavior in two standard cell lines, NIH/3T3 and A549

Etaluma

Feb 7, 2018

The uptake of nanomaterials into different cell types is a key issue for the determination of nanotoxicity as well as...

Show all topics (10)

Preclinical cardiac safety assesment

Mar 22, 2016

Over the last two decades, a number of blockbuster drugs have been withdrawn or have incurred safety warnings by regulatory agencies due to adverse cardiac effects. In addition, lead compounds or drug candidates are frequently terminated at late stages of drug development due to cardiac safety concerns. Both of these factors can significantly impact the overall cost of drug discovery; consequently, pharmaceutical companies and regulatory agencies have implemented procedures to address these issues.

Most, if not all, in vitro assay systems for cardiac safety are designed to screen for surrogates of arrhythmia, such as hERG channel interaction, rather than arrhythmia itself. Assays designed to screen for compounds that may affect repolarization and induce arrhythmia in the context of the whole heart or heart tissue are not implemented until much later in drug development. These include sophisticated, technically demanding, lowthroughput, and costly procedures such as the Purkinje fiber assay, ventricular wedge assay, and the Langendorff whole heart assay, or telemetry experiments in live and anesthetized animals. The field of preclinical cardiac safety can certainly benefit from an assay system that allows for integrated assessment of compound action on ion channel and non-ion channel targets involved in cardiac excitation-contraction coupling.

The RTCA Cardio Instrument in conjunction with iCell Cardiomyocytes comprises an assay system providing integrated assessment of compound action on multiple targets involved in heart function. This assay system can sensitively and quantitatively detect the effect of compounds on the major ion channels involved in heart function, namely calcium, sodium, and potassium channels. Another major advantage of the assay system is the time resolution. The RTCA Cardio Instrument has a data acquisition rate of 12.5 ms per well of a 96-well plate and can be used simultaneously to monitor acute and chronic drug effects up to days and weeks. The utility of the time-dependent monitoring of compound action on cardiomyocytes can be demonstrated by testing compounds that acutely and directly block hERG channels (E4031, cisapride, etc.) and compounds that interfere with protein trafficking (pentamidine) in a sub-chronic manner. The RTCA Cardio Instrument is able to detect the effects of these compounds on the beating rate and duration of iCell Cardiomyocytes.

The xCELLigence System RTCA Cardio Instrument, in conjunction with iCell Cardiomyocytes, represents a physiologically relevant and predictive assay system for preclinical cardio-safety assessment of lead compounds. The features of this assay system, including time resolution, dynamic monitoring of mechanical beating activity of cardiomyocytes, and 96-well throughput, will surely provide additional mechanistic and toxicity information for compound action on the heart.

Application
Product news

Related technologies: Real-time, Label Free Cell Analysis

Brand profile

Acea Biosciences

ACEA manufactures xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey