Accelerate to discover

Back to filter

Related topics

Extensive assessment of Cytokine production on the NovoCyte Penteon flow cytometer

Agilent technologies

Nov 23, 2021

Cytokines are small molecules essential for immune cell response to activation by pathogens, autoimmunity, or...

Discover the advanced Detector Technology in Agilent NovoCyte flow cytometers

Agilent technologies

Nov 8, 2021

This technical overview describes advancements in detector technology, and highlights examples where optimal signal...

Jan 18, 2022

X-ray-virus-inactivation

Precision X-Ray

Oct 20, 2021

Ionizing radiation approaches are effective but use of radioactive radioisotopic elements have become difficult to...

Duke uses XRAD 225 CX to test radiosensitivity hypothesis

Precision X-Ray

Oct 18, 2021

Image guided radiotherapy in a preclinical setting couldn’t be more useful than the treatment of brain tumors, where...

Curiox webinar: Laminar Wash enables single-cell multiomics and cell hashing

Curiox

Oct 11, 2021

Professor Mats Bemark’s lab at the University of Gothenburg in Sweden studies how the immune system responds to...

Jan 18, 2022

Falling in love with Magnetic resonance

Bruker Biospin

Oct 4, 2021

Magnetic Resonance (MR) is more than just analytical science, it is unique, it is a passion that won’t let you go

Show all topics (10)

Great ape genomes laid bare

Aug 3, 2018

Evan Eichler assembled a large team, including several Bionano scientists, to sequence and assemble two human, one chimpanzee, and one orangutan genome using high-coverage long-read sequencing and Bionano genome mapping. They also sequenced more than 500,000 full-length cDNA samples to construct de novo gene models and map transcript diversity in each ape lineage. Bionano mapping identified several larger, subcytogenetic structural differences that were not detected or sequence-resolved in previous genome assemblies. The authors identified 29 human-chimpanzee-orangutan inversions ranging from 100 kbp to 5 Mbp in size, of which 55% have not been previously described. More than 93% of inversions are flanked by large complex segmental-duplication blocks, 38% of which show evidence of other structural and copy-number variation at the boundaries of the inversion. Even long-read sequencing can’t typically span those long segmental duplications, which is why Bionano can detect such large inversions better than any other technology.

 

Scientific paper
Application

Get more info

Regina Fillerová

Field application specialist

Regina

Fillerová

+420 731 127 718

Send Message

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

Saphyr provides rapid, high-throughput, long-range genome mapping with unmatched structural variation discovery capabilities

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey