A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
Accelerate to discover
Related topics
Educational webinar: Introducing MARS Platform for gentle cell separation
Sep 6, 2023
Join us for a webinar where we will introduce the new MARS Platform by Applied Cells, a...
Aug 17, 2023
Register for an engaging webinar led by Naz Chaudary, Ph.D., and Research Technician, Alex Wang from the...
Optimizing Gene Expression with Bioluminescence & the piggyBac System
Aug 15, 2023
Discover how bioluminescence imaging & the piggyBac gene editing system optimize & track gene expression in mouse...
High-plex immunofluorescence imaging and traditional histology of the same tissue section
Aug 7, 2023
RareCyte Orion’ platform has been used for collecting H&E and high-plex immunofluorescence images from the same cells...
Drive key insights and discoveries with NEW Live Cell Analysis applications for eSight system
Aug 2, 2023
eSight is now powerful like never before. Learn more about new dedicated application modules for live-cell analysis: 3D...
Single cell-resolution in situ sequencing elucidates spatial dynamics of multiple sclerosis
Jul 14, 2023
MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, fluidics, image processing,...
MARS - High Efficiency Separation of CD34+ HSC from Mobilized Blood
Jul 12, 2023
MARS platform provides an easy and cost-effective protocol for CD34+ cell isolation. Single pass CD34+ HSC enrichment...
43 markers, ONE tube : Impress yourself with Cytek Aurora Spectral Cytometer
Jul 11, 2023
Using Cytek full spectrum flow cytometry, scientists at Hamad Medical Corporation, developed a 43 color panel to...
Nov 24, 2017
Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.
Get more info
Brand profile
A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
More info at:
www.bionanogenomics.com