A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
Accelerate to discover
Related topics
InAlyzer to evaluate G6PD activity in relation with frailty
Mar 28, 2023
InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...
Cardiomyocyte isolation using Cellenion’s cellenONE instrument
Mar 24, 2023
The cellenONE platform is ideal for the isolation of fragile and heterogeneous cell size populations, such as...
ACCELA educational webinar: Unlocking Spatial Biology with RareCyte Orion
Mar 16, 2023
Experience Spatial Biology with Orion Multiplex Imaging. Orion is a benchtop, high...
Recorded webinar: Anesthesia Considerations in Small Animal Imaging
Mar 13, 2023
Anesthesia settings and operation of Optical Imaging Systems: methods, animal handling, safety and regulatory...
Introducing Cytek Human Leukocyte Kit, the first ever 15-color lyse no-wash assay
Mar 13, 2023
This kit has been designed to enumerate all major leukocyte subsets and it mirrors and expands on those identified in a...
Immunofluorescence Imaging for Rare Cell Detection with CyteFinder II
Mar 7, 2023
CyteFinder II Instruments are high speed, whole slide imaging systems with options for liquid biopsy analysis and...
NanoCellect Webinar: Optimizing the Cell Line Development Process with Microfluidic Cell Sorting
Mar 3, 2023
Single-cell selection and cloning are required for bioengineering workflows such as antibody production, cell therapy,...
New Kit for Bacterial analysis expands capability of Guava Muse flow cytometer
Feb 20, 2023
With the Guava Muse cell analyzer, you can now achieve highly quantitative results at a fraction of the price, effort,...
Jul 17, 2017
Here we report the de novo assembly of an indica rice genome Shuhui498 (R498) through the integration of single-molecule sequencing and mapping data, genetic map and fosmid sequence tags. The 390.3 Mb assembly is estimated to cover more than 99% of the R498 genome and is more continuous than the current reference genomes of japonica rice Nipponbare (MSU7) and Arabidopsis thaliana (TAIR10). We annotate high-quality protein-coding genes in R498 and identify genetic variations between R498 and Nipponbare and presence/absence variations by comparing them to 17 draft genomes in cultivated rice and its closest wild relatives. Our results demonstrate how to de novo assemble a highly contiguous and near-complete plant genome through an integrative strategy. The R498 genome will serve as a reference for the discovery of genes and structural variations in rice.
Get more info
Brand profile
A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.
More info at:
www.bionanogenomics.com