Accelerate to discover

Back to filter

Related topics

The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging

Precision X-Ray

Apr 4, 2024

Here, we assessed the chicken chorioallantoic membrane (CAM) as an alternative to mice for preclinical cancer imaging...

A microthrombus-driven fixed-point cleaved nanosystem for preventing post-thrombolysis recurrence

IVIM Technology

Apr 3, 2024

A thrombin-responsive and fixed-point cleaved Fu@pep-CLipo was developed for highly efficient and precise thrombolysis...

Webinar: Multimodal Assessment of Hypoxia in Tumors: From the Lab to the Clinic

Bruker Biospin

Apr 2, 2024

25 April 2024, 4PM CET
This webinar will be of interest to multiple profiles in the community of biomedical
...

Multiplexed tissue imaging using the Orion platform to reveal the Spatial Biology of Cancer

RareCyte

Mar 27, 2024

In this webinar Prof. Sandro Santagata, will reveal how Orion high-plex imaging and the use of this data, is valuable...

Apr 19, 2024

A 19-color single-tube Full Spectrum Flow Cytometry for the detection of Acute Myeloid Leukemia

Cytek Biosciences

Mar 13, 2024

This recent publication in Cytometry Part A describes the development and comprehensive workflow of a single-tube,...

18F-labeled somatostatin analogs for somatostatin receptors (SSTRs) targeted PET imaging of NETs

MOLECUBES

Mar 11, 2024

A novel 18F-radiolabeled somatostatin analogue, [Al18F]NODA-MPAA-HTA, was synthesized and evaluated for positron...

Discover Yokogawa CellVoyager CQ1: Benchtop High-Content Analysis System

Yokogawa

Mar 8, 2024

Unlike flow cytometers, the CellVoyager CQ1 confocal quantitative image cytometer does not require pretreatment such as...

Apr 19, 2024

Real-time and quantitative analysis of Macrophage Phagocytosis with RTCA eSight

Agilent technologies

Feb 23, 2024

The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance
...

Show all topics (10)

Whole genome optical mapping reveals multiple fusion events chained by novel sequences in cancer

Sep 5, 2017

Genomic rearrangements are common in cancer, with demonstrated links to disease progression and treatment response. These rearrangements can be complex, resulting in fusions of multiple chromosomal fragments and generation of derivative chromosomes. While methods exist for detecting individual fusions, they are generally unable to reconstruct complex chained events. To overcome these limitations, we adopted a new optical mapping approach, allowing for megabase length DNA to be captured, and in turn rearranged genomes to be visualized without loss of integrity. Whole genome mapping (Bionano Genomics) of a well-studied highly rearranged liposarcoma cell line, resulted in 3,338 assembled haploid genome maps, including 101 fusion maps. These fusion maps represent 175 Mb of highly rearranged genomic regions, illuminating the complex architecture of chained fusions, including content, order, orientation, and size. Spanning the junction of 151 chromosomal translocations, we found a total of 32 Mb of novel interspersed sequences that were not detected from short-read sequencing. We demonstrate that optical mapping provides a powerful new approach for capturing a higher level of complex genomic architecture, creating a scaffold for renewed interpretation of sequencing data of particular relevance to human cancer.

Read more

 

Scientific paper
Application

Get more info

Regina Fillerová

Field application specialist

Regina

Fillerová

+420 731 127 718

Send Message

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

Saphyr provides rapid, high-throughput, long-range genome mapping with unmatched structural variation discovery capabilities

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey