Accelerate to discover

Back to filter

Related topics

The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging

Precision X-Ray

Apr 4, 2024

Here, we assessed the chicken chorioallantoic membrane (CAM) as an alternative to mice for preclinical cancer imaging...

A microthrombus-driven fixed-point cleaved nanosystem for preventing post-thrombolysis recurrence

IVIM Technology

Apr 3, 2024

A thrombin-responsive and fixed-point cleaved Fu@pep-CLipo was developed for highly efficient and precise thrombolysis...

Webinar: Multimodal Assessment of Hypoxia in Tumors: From the Lab to the Clinic

Bruker Biospin

Apr 2, 2024

25 April 2024, 4PM CET
This webinar will be of interest to multiple profiles in the community of biomedical
...

Multiplexed tissue imaging using the Orion platform to reveal the Spatial Biology of Cancer

RareCyte

Mar 27, 2024

In this webinar Prof. Sandro Santagata, will reveal how Orion high-plex imaging and the use of this data, is valuable...

Apr 27, 2024

A 19-color single-tube Full Spectrum Flow Cytometry for the detection of Acute Myeloid Leukemia

Cytek Biosciences

Mar 13, 2024

This recent publication in Cytometry Part A describes the development and comprehensive workflow of a single-tube,...

18F-labeled somatostatin analogs for somatostatin receptors (SSTRs) targeted PET imaging of NETs

MOLECUBES

Mar 11, 2024

A novel 18F-radiolabeled somatostatin analogue, [Al18F]NODA-MPAA-HTA, was synthesized and evaluated for positron...

Discover Yokogawa CellVoyager CQ1: Benchtop High-Content Analysis System

Yokogawa

Mar 8, 2024

Unlike flow cytometers, the CellVoyager CQ1 confocal quantitative image cytometer does not require pretreatment such as...

Apr 27, 2024

Real-time and quantitative analysis of Macrophage Phagocytosis with RTCA eSight

Agilent technologies

Feb 23, 2024

The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance
...

Show all topics (10)

Genome-wide structural variation detection by genome mapping on nanochannel arrays

Jun 14, 2016

„Comprehensive whole genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole genome structural variation detection without sequencing. While whole genome haplotyping is not achieved, local phasing (across >150 kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variation that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation.“ Mak et al. (2015): Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays. In Genetics. 2015

Read more

Scientific paper
Application

Brand profile

BioNano Genomics

A revolutionary NanoChannel technology for Genome mapping of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias.

Related products

Genome maps of extremely long DNA without amplification, providing long-range contiguity and eliminating PCR bias

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey